Mesures invariantes pour les fractions rationnelles géométriquement finies
Havard, Guillaume
Fundamenta Mathematicae, Tome 159 (1999), p. 39-61 / Harvested from The Polish Digital Mathematics Library

Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p(T)+1p(T)δ>2. Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212380
@article{bwmeta1.element.bwnjournal-article-fmv160i1p39bwm,
     author = {Guillaume Havard},
     title = {Mesures invariantes pour les fractions rationnelles g\'eom\'etriquement finies},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {39-61},
     zbl = {0984.37049},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p39bwm}
}
Havard, Guillaume. Mesures invariantes pour les fractions rationnelles géométriquement finies. Fundamenta Mathematicae, Tome 159 (1999) pp. 39-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p39bwm/

[00000] [Aa,De,Ur] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. | Zbl 0789.28010

[00001] [Bo,Zi] O. Bodart et M. Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), 121-137.

[00002] [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. | Zbl 0308.28010

[00003] [Bow] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. | Zbl 0734.28007

[00004] [De,Ur1] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. | Zbl 0745.28008

[00005] [Fo] S. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand, 1969.

[00006] [Mc,Mu1] C. McMullen, Hausdorff dimension and conformal dynamics 2: Geometrically finite rational maps, preprint, 1997.

[00007] [Mc,Mu2] C. McMullen, Hausdorff dimension and conformal dynamics 3: Computation of dimension, preprint, 1997.

[00008] [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Sto-ny Brook IMS preprint, 1990.

[00009] [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. | Zbl 0762.30001

[00010] [Pr,Ur] F. Przytycki and M. Urbański, Fractals in the complex plane-ergodic theory methods, to appear.

[00011] [Ru1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978.

[00012] [Ru2] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107.

[00013] [Sm] S. Smirnov, Spectral analysis of Julia sets, thesis, California Institute of Technology, 1996.

[00014] [Su] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math. 1007, Springer, 1983, 725-752.

[00015] [Ur1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. | Zbl 0807.58025

[00016] [Ur2] M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, ibid. 17 (1997), 1449-1476. | Zbl 0894.58036

[00017] [Wa1] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937-971. | Zbl 0318.28007

[00018] [Wa2] P. Walters, An Introduction to Ergodic Theory, Springer, 1982.