Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.
@article{bwmeta1.element.bwnjournal-article-fmv160i1p39bwm, author = {Guillaume Havard}, title = {Mesures invariantes pour les fractions rationnelles g\'eom\'etriquement finies}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {39-61}, zbl = {0984.37049}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p39bwm} }
Havard, Guillaume. Mesures invariantes pour les fractions rationnelles géométriquement finies. Fundamenta Mathematicae, Tome 159 (1999) pp. 39-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p39bwm/
[00000] [Aa,De,Ur] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. | Zbl 0789.28010
[00001] [Bo,Zi] O. Bodart et M. Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), 121-137.
[00002] [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. | Zbl 0308.28010
[00003] [Bow] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. | Zbl 0734.28007
[00004] [De,Ur1] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. | Zbl 0745.28008
[00005] [Fo] S. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand, 1969.
[00006] [Mc,Mu1] C. McMullen, Hausdorff dimension and conformal dynamics 2: Geometrically finite rational maps, preprint, 1997.
[00007] [Mc,Mu2] C. McMullen, Hausdorff dimension and conformal dynamics 3: Computation of dimension, preprint, 1997.
[00008] [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Sto-ny Brook IMS preprint, 1990.
[00009] [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. | Zbl 0762.30001
[00010] [Pr,Ur] F. Przytycki and M. Urbański, Fractals in the complex plane-ergodic theory methods, to appear.
[00011] [Ru1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978.
[00012] [Ru2] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107.
[00013] [Sm] S. Smirnov, Spectral analysis of Julia sets, thesis, California Institute of Technology, 1996.
[00014] [Su] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math. 1007, Springer, 1983, 725-752.
[00015] [Ur1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. | Zbl 0807.58025
[00016] [Ur2] M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, ibid. 17 (1997), 1449-1476. | Zbl 0894.58036
[00017] [Wa1] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937-971. | Zbl 0318.28007
[00018] [Wa2] P. Walters, An Introduction to Ergodic Theory, Springer, 1982.