@article{bwmeta1.element.bwnjournal-article-fmv160i1p27bwm, author = {Teresa Bigorajska and Henryk Kotlarski}, title = {A partition theorem for $\alpha$-large sets}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {27-37}, zbl = {0933.03055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p27bwm} }
Bigorajska, Teresa; Kotlarski, Henryk. A partition theorem for α-large sets. Fundamenta Mathematicae, Tome 159 (1999) pp. 27-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p27bwm/
[00000] [1] T. Bigorajska, H. Kotlarski and J. Schmerl, On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic, Fund. Math. 158 (1998), 125-146. | Zbl 0920.03069
[00001] [2] C E. A. Cichon, A short proof of two recently discovered independence results using recursion theoretic methods, Proc. Amer. Math. Soc. 87 (1983), 704-706. | Zbl 0512.03028
[00002] [3] W M. V. H. Fairlough and S. S. Wainer, Ordinal complexity of recursive definitions, Inform. and Comput. 99 (1992), 123-153. | Zbl 0768.03027
[00003] [4] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, 1990.
[00004] [5] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981), 267-314. | Zbl 0494.03027
[00005] [6] H. Kotlarski and Z. Ratajczyk, Inductive full satisfaction classes, Ann. Pure Appl. Logic 47 (1990), 199-223. | Zbl 0708.03014
[00006] [7] H. Kotlarski and Z. Ratajczyk, More on induction in the language with a satisfaction class, Z. Math. Logik 36 (1990), 441-454. | Zbl 0723.03033
[00007] [8] W. Pohlers, Proof Theory, Lecture Notes in Math. 1047, Springer, 1989.
[00008] [9] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in , Fund. Math. 130 (1988), 191-213.
[00009] [10] Z. Ratajczyk, Subsystems of true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic 64 (1993), 95-152. | Zbl 0802.03036
[00010] [11] R. Sommer, Transfinite induction within Peano arithmetic, ibid. 76 (1995), 231-289. | Zbl 0858.03056