@article{bwmeta1.element.bwnjournal-article-fmv159i3p269bwm, author = {Bogus\l awa Karpi\'nska}, title = {Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda$e^z and $\lambda$ sin(z)}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {269-287}, zbl = {0927.37025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p269bwm} }
Karpińska, Bogusława. Area and Hausdorff dimension of the set of accessible points of the Julia sets of λe^z and λ sin(z). Fundamenta Mathematicae, Tome 159 (1999) pp. 269-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p269bwm/
[00000] [1] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153. | Zbl 0168.04002
[00001] [2] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-26.
[00002] [3] R. L. Devaney and L. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 2 (1987), 253-266. | Zbl 0621.30024
[00003] [4] R. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory Dynam. Systems 4 (1984), 35-52. | Zbl 0567.58025
[00004] [5] R. L. Devaney and F. Tangerman, Dynamics of entire functions near the essential singularity, ibid. 6 (1986), 489-503. | Zbl 0612.58020
[00005] [6] P. L. Duren, Univalent Functions, Springer, New York, 1983.
[00006] [7] A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989-1020. | Zbl 0735.58031
[00007] [8] N. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369-384. | Zbl 0573.30029
[00008] [9] J. Mayer, An explosion point for the set of endpoints of the Julia set of λexp(z), Ergodic Theory Dynam. Systems 10 (1990), 177-183.
[00009] [10] C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342. | Zbl 0618.30027
[00010] [11] F. Przytycki and M. Urbański, Conformal repellers and ergodic theory, in preparation. | Zbl 1202.37001
[00011] [12] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107. | Zbl 0506.58024