We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.
@article{bwmeta1.element.bwnjournal-article-fmv159i3p231bwm, author = {R. Berr and Fran\c coise Delon and J. Schmid}, title = {Ordered fields and the ultrafilter theorem}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {231-241}, zbl = {0940.12004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p231bwm} }
Berr, R.; Delon, Françoise; Schmid, J. Ordered fields and the ultrafilter theorem. Fundamenta Mathematicae, Tome 159 (1999) pp. 231-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p231bwm/
[00000] [1] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100-115. | Zbl 52.0122.01
[00001] [2] E. Artin, Schreier, O. Algebraische Konstruktion reeller Körper, ibid., 85-99.
[00002] [3] T. Jech, The Axiom of Choice, North-Holland, 1973. | Zbl 0259.02051
[00003] [4] H. Lombardi and M.-F. Roy, Constructive elementary theory of ordered fields, in: Effective Methods in Algebraic Geometry, Progr. Math. 94, Birkhäuser, 1991, 249-262.
[00004] [5] T. Sander, Existence and uniqueness of the real closure of an ordered field without Zorn's Lemma, J. Pure Appl. Algebra 73 (1991), 165-180. | Zbl 0761.12004
[00005] [6] A. Tarski, Prime ideal theorems for set algebras and ordering principles, preliminary report, Bull. Amer. Math. Soc. 60 (1954), 391.