The paper treats functions which are defined on closed subsets of [0,1] and which are k times Peano differentiable. A necessary and sufficient condition is given for the existence of a k times Peano differentiable extension of such a function to [0,1]. Several applications of the result are presented. In particular, functions defined on symmetric perfect sets are studied.
@article{bwmeta1.element.bwnjournal-article-fmv159i3p219bwm, author = {Hans Volkmer}, title = {Extending Peano derivatives: necessary and sufficient conditions}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {219-229}, zbl = {0945.26008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p219bwm} }
Volkmer, Hans. Extending Peano derivatives: necessary and sufficient conditions. Fundamenta Mathematicae, Tome 159 (1999) pp. 219-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p219bwm/
[00000] [1] Z. Buczolich, Second Peano derivatives are not extendable, Real Anal. Exchange 14 (1988-89), 423-428. | Zbl 0679.26005
[00001] [2] Z. Buczolich and C. Weil, Extending Peano differentiable functions, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 323-330. | Zbl 0865.26007
[00002] [3] P. Bullen, Denjoy's index and porosity, Real Anal. Exchange 10 (1984-85), 85-144. | Zbl 0595.26001
[00003] [4] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326. | Zbl 61.1115.03
[00004] [5] A. Denjoy, Leçons sur le calcul de coefficients d'une série trigonométrique I-IV, Gauthier-Villars, Paris, 1941-1949.
[00005] [6] H. Fejzić, The Peano derivatives, doct. dissertation, Michigan State Univ., 1992.
[00006] [7] H. Fejzić, J. Mařík and C. Weil, Extending Peano derivatives, Math. Bohem. 119 (1994), 387-406. | Zbl 0824.26003
[00007] [8] H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. | Zbl 0055.28505
[00008] [9] B. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, Berlin, 1985.