It was proved by Juhász and Weiss that for every ordinal α with there is a superatomic Boolean algebra of height α and width ω. We prove that if κ is an infinite cardinal such that and α is an ordinal such that , then there is a cardinal-preserving partial order that forces the existence of a superatomic Boolean algebra of height α and width κ. Furthermore, iterating this forcing through all , we obtain a notion of forcing that preserves cardinals and such that in the corresponding generic extension there is a superatomic Boolean algebra of height α and width κ for every . Consistency for specific κ, like , then follows as a corollary.
@article{bwmeta1.element.bwnjournal-article-fmv159i2p99bwm, author = {Juan Mart\'\i nez}, title = {A forcing construction of thin-tall Boolean algebras}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {99-113}, zbl = {0928.03058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p99bwm} }
Martínez, Juan. A forcing construction of thin-tall Boolean algebras. Fundamenta Mathematicae, Tome 159 (1999) pp. 99-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p99bwm/
[00000] [1] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439. | Zbl 0339.04003
[00001] [2] J. E. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), Cambridge Univ. Press, 1983, 1-59.
[00002] [3] J. E. Baumgartner and S. Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987), 109-129. | Zbl 0643.03038
[00003] [4] T. Jech, Set Theory, Academic Press, New York, 1978.
[00004] [5] I. Juhász and W. Weiss, On thin-tall scattered spaces, Colloq. Math. 40 (1978), 63-68. | Zbl 0416.54038
[00005] [6] W. Just, Two consistency results concerning thin-tall Boolean algebras, Algebra Universalis 20 (1985), 135-142. | Zbl 0571.03022
[00006] [7] P. Koepke and J. C. Martínez, Superatomic Boolean algebras constructed from morasses, J. Symbolic Logic 60 (1995), 940-951. | Zbl 0854.06018
[00007] [8] S. Koppelberg, Handbook of Boolean Algebras, Vol. 1, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989. | Zbl 0676.06019
[00008] [9] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
[00009] [10] J. C. Martínez, A consistency result on thin-tall superatomic Boolean algebras, Proc. Amer. Math. Soc. 115 (1992), 473-477. | Zbl 0767.03026
[00010] [11] J. Roitman, Height and width of superatomic Boolean algebras, ibid. 94 (1985), 9-14. | Zbl 0534.06004
[00011] [12] J. Roitman, Superatomic Boolean algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989, 719-740.