A forcing construction of thin-tall Boolean algebras
Martínez, Juan
Fundamenta Mathematicae, Tome 159 (1999), p. 99-113 / Harvested from The Polish Digital Mathematics Library

It was proved by Juhász and Weiss that for every ordinal α with 0<α<ω2 there is a superatomic Boolean algebra of height α and width ω. We prove that if κ is an infinite cardinal such that κ<κ=κ and α is an ordinal such that 0<α<κ++, then there is a cardinal-preserving partial order that forces the existence of a superatomic Boolean algebra of height α and width κ. Furthermore, iterating this forcing through all α<κ++, we obtain a notion of forcing that preserves cardinals and such that in the corresponding generic extension there is a superatomic Boolean algebra of height α and width κ for every α<κ++. Consistency for specific κ, like ω1, then follows as a corollary.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212328
@article{bwmeta1.element.bwnjournal-article-fmv159i2p99bwm,
     author = {Juan Mart\'\i nez},
     title = {A forcing construction of thin-tall Boolean algebras},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {99-113},
     zbl = {0928.03058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p99bwm}
}
Martínez, Juan. A forcing construction of thin-tall Boolean algebras. Fundamenta Mathematicae, Tome 159 (1999) pp. 99-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p99bwm/

[00000] [1] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439. | Zbl 0339.04003

[00001] [2] J. E. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), Cambridge Univ. Press, 1983, 1-59.

[00002] [3] J. E. Baumgartner and S. Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987), 109-129. | Zbl 0643.03038

[00003] [4] T. Jech, Set Theory, Academic Press, New York, 1978.

[00004] [5] I. Juhász and W. Weiss, On thin-tall scattered spaces, Colloq. Math. 40 (1978), 63-68. | Zbl 0416.54038

[00005] [6] W. Just, Two consistency results concerning thin-tall Boolean algebras, Algebra Universalis 20 (1985), 135-142. | Zbl 0571.03022

[00006] [7] P. Koepke and J. C. Martínez, Superatomic Boolean algebras constructed from morasses, J. Symbolic Logic 60 (1995), 940-951. | Zbl 0854.06018

[00007] [8] S. Koppelberg, Handbook of Boolean Algebras, Vol. 1, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989. | Zbl 0676.06019

[00008] [9] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.

[00009] [10] J. C. Martínez, A consistency result on thin-tall superatomic Boolean algebras, Proc. Amer. Math. Soc. 115 (1992), 473-477. | Zbl 0767.03026

[00010] [11] J. Roitman, Height and width of superatomic Boolean algebras, ibid. 94 (1985), 9-14. | Zbl 0534.06004

[00011] [12] J. Roitman, Superatomic Boolean algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989, 719-740.