We study properties of and subsets of that are cofinal relative to the orders ≤ (≤*) of full (eventual) domination. We apply these results to prove that the topological statement “Any compact covering mapping from a Borel space onto a Polish space is inductively perfect” is equivalent to the statement " is bounded for ≤*".
@article{bwmeta1.element.bwnjournal-article-fmv159i2p161bwm, author = {Gabriel Debs and Jean Saint Raymond}, title = {Cofinal $$\Sigma$^1\_1$ and $$\Pi$^1\_1$ subsets of $$\omega$^$\omega$$ }, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {161-193}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p161bwm} }
Debs, Gabriel; Saint Raymond, Jean. Cofinal $Σ^1_1$ and $Π^1_1$ subsets of $ω^ω$ . Fundamenta Mathematicae, Tome 159 (1999) pp. 161-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p161bwm/
[00000] [1] J. Brendle, G. Hjorth and O. Spinas, Regularity properties for dominating projective sets, Ann. Pure Appl. Logic 72 (1995), 291-307. | Zbl 0824.03025
[00001] [2] J. P. R. Christensen, Necessary and sufficient conditions for the measurability of certain sets of closed sets, Math. Ann. 200 (1973), 189-193. | Zbl 0233.28002
[00002] [3] G. Debs and J. Saint Raymond, Compact covering and game determinacy, Topology Appl. 68 (1996), 153-185. | Zbl 0848.54024
[00003] [4] W. Just and H. Wicke, Some conditions under which tri-quotient or compact-covering maps are inductively perfect, ibid. 55 (1994), 289-305. | Zbl 0794.54019
[00004] [5] A. Louveau, A separation theorem for sets, Trans. Amer. Math. Soc. 260 (1980), 363-378.
[00005] [6] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[00006] [7] A. V. Ostrovskiĭ, On new classes of mappings associated with k-covering mappings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, no. 4, 24-28 (in Russian); English transl.: Moscow Univ. Math. Bull. 49 (1994), no. 4, 29-23.
[00007] [8] J. Saint Raymond, Caractérisation d’espaces polonais d’après des travaux récents de J. P. R. Christensen et D. Preiss, Sém. Choquet, 11-12 années, Initiation à l’Analyse, exp. no. 5, Secrétariat Mathématique, Paris, 1973, 10 pp.
[00008] [9] J. Saint Raymond, La structure borélienne d'Effros est-elle standard?, Fund. Math. 100 (1979), 201-210. | Zbl 0434.54028
[00009] [10] O. Spinas, Dominating projective sets in the Baire space, Ann. Pure Appl. Logic 68 (1995), 327-342. | Zbl 0821.03021