Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or
@article{bwmeta1.element.bwnjournal-article-fmv159i2p127bwm, author = {Young Im and Yongkuk Kim}, title = {Hopfian and strongly hopfian manifolds}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {127-134}, zbl = {0926.57025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p127bwm} }
Im, Young; Kim, Yongkuk. Hopfian and strongly hopfian manifolds. Fundamenta Mathematicae, Tome 159 (1999) pp. 127-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i2p127bwm/
[00000] [1] G. Baumslag and D. Solitar, Some two-generator and one relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201. | Zbl 0108.02702
[00001] [2] N. Chinen, Manifolds with nonzero Euler characteristic and codimension-2 fibrators, Topology Appl. 86 (1998), 151-167. | Zbl 0930.57020
[00002] [3] N. Chinen, Finite groups and approximate fibrations, ibid., to appear.
[00003] [4] D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288. | Zbl 0367.55019
[00004] [5] D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56. | Zbl 0368.55016
[00005] [6] D. S. Coram and P. F. Duvall, Mappings from to whose point inverses have the shape of a circle, Gen. Topology Appl. 10 (1979), 239-246. | Zbl 0417.54014
[00006] [7] R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), 173-184. | Zbl 0684.57009
[00007] [8] R. J. Daverman, Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993), 159-176. | Zbl 0788.57012
[00008] [9] R. J. Daverman, Codimension-2 fibrators with finite fundamental groups, Proc. Amer. Math. Soc., to appear. | Zbl 0913.55004
[00009] [10] R. J. Daverman, 3-manifolds with geometric structure and approximate fibrations, Indiana Univ. Math. J. 40 (1991), 1451-1469. | Zbl 0739.57007
[00010] [11] J. C. Hausmann, Geometric Hopfian and non-Hopfian situations, in: Lecture Notes in Pure and Appl. Math. 105, Marcel Dekker, New York, 1987, 157-166.
[00011] [12] J. C. Hausmann, Fundamental group problems related to Poincaré duality, in: CMS Conf. Proc. 2, Amer. Math. Soc., Providence, R.I., 1982, 327-336. | Zbl 0555.57005
[00012] [13] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, Princeton, N.J., 1976.
[00013] [14] R. Hirshon, Some results on direct sum of hopfian groups, Ph.D. Dissertation, Adelphi Univ., 1967.
[00014] [15] Y. H. Im, Products of surfaces that induce approximate fibrations, Houston J. Math. 21 (1995), 339-348. | Zbl 0841.57031
[00015] [16] Y. Kim, Strongly hopfian manifolds as codimension-2 fibrators, Topology Appl., to appear. | Zbl 0930.57021
[00016] [17] Y. Kim, Manifolds with hyperhopfian fundamental group as codimension-2 fibrators, ibid., to appear. | Zbl 0947.57025
[00017] [18] A. N. Parshin and I. R. Shafarevich, Algebra VII, Encyclopaedia Math. Sci. 58, Springer, 1993.
[00018] [19] J. Roitberg, Residually finite, hopfian and co-hopfian spaces, in: Contemp. Math. 37, Amer. Math. Soc., 1985, 131-144. | Zbl 0562.55008