We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
@article{bwmeta1.element.bwnjournal-article-fmv159i1p91bwm, author = {Ilka Agricola and Thomas Friedrich}, title = {The Gaussian measure on algebraic varieties}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {91-98}, zbl = {0924.58005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p91bwm} }
Agricola, Ilka; Friedrich, Thomas. The Gaussian measure on algebraic varieties. Fundamenta Mathematicae, Tome 159 (1999) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p91bwm/
[00000] [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation.
[00001] [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156.
[00002] [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980.
[00003] [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280. | Zbl 0123.38302
[00004] [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234.
[00005] [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
[00006] [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78. | Zbl 0126.09502
[00007] [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170.