The Gaussian measure on algebraic varieties
Agricola, Ilka ; Friedrich, Thomas
Fundamenta Mathematicae, Tome 159 (1999), p. 91-98 / Harvested from The Polish Digital Mathematics Library

We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety Mn is dense in the Hilbert space L2(M,e-|x|2dμ), where dμ denotes the volume form of M and dν=e-|x|2dμ the Gaussian measure on M.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212322
@article{bwmeta1.element.bwnjournal-article-fmv159i1p91bwm,
     author = {Ilka Agricola and Thomas Friedrich},
     title = {The Gaussian measure on algebraic varieties},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {91-98},
     zbl = {0924.58005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p91bwm}
}
Agricola, Ilka; Friedrich, Thomas. The Gaussian measure on algebraic varieties. Fundamenta Mathematicae, Tome 159 (1999) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p91bwm/

[00000] [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation.

[00001] [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156.

[00002] [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980.

[00003] [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280. | Zbl 0123.38302

[00004] [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234.

[00005] [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.

[00006] [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78. | Zbl 0126.09502

[00007] [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170.