Hausdorff ’s theorem for posets that satisfy the finite antichain property
Abraham, Uri ; Bonnet, Robert
Fundamenta Mathematicae, Tome 159 (1999), p. 51-69 / Harvested from The Polish Digital Mathematics Library

Hausdorff characterized the class of scattered linear orderings as the least family of linear orderings that includes the ordinals and is closed under ordinal summations and inversions. We formulate and prove a corresponding characterization of the class of scattered partial orderings that satisfy the finite antichain condition (FAC).  Consider the least class of partial orderings containing the class of well-founded orderings that satisfy the FAC and is closed under the following operations: (1) inversion, (2) lexicographic sum, and (3) augmentation (where P, augments ⟨P, ≤⟩ iff xy whenever x ≤ y). We show that this closure consists of all scattered posets satisfying the

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212319
@article{bwmeta1.element.bwnjournal-article-fmv159i1p51bwm,
     author = {Uri Abraham and Robert Bonnet},
     title = {Hausdorff 's theorem for posets that satisfy the finite antichain property},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {51-69},
     zbl = {0934.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p51bwm}
}
Abraham, Uri; Bonnet, Robert. Hausdorff ’s theorem for posets that satisfy the finite antichain property. Fundamenta Mathematicae, Tome 159 (1999) pp. 51-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p51bwm/

[00000] [1] U. Abraham, A note on Dilworth's theorem in the infinite case, Order 4 (1987), 107-125. | Zbl 0629.06002

[00001] [2] R. Bonnet et M. Pouzet, Extension et stratification d'ensembles dispersés, C. R. Acad. Sci. Paris Sér. A 168 (1969), 1512-1515. | Zbl 0188.04203

[00002] [3] P. W. Carruth, Arithmetic of ordinals with applications to the theory of ordered abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262-271. | Zbl 0061.09308

[00003] [4] R. Fraïssé, Theory of Relations, Stud. Logic Found. Math. 118, North-Holland, 1986.

[00004] [5] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1908), 435-505. | Zbl 39.0099.01

[00005] [6] G. Hessenberg, Grundbegriffe der Mengenlehre, Abh. Friesschen Schule neue Folge 4 (1906).

[00006] [7] A. Lévy, Basic Set Theory, Springer, 1979.

[00007] [8] W. Sierpiński, Cardinal and Ordinal Numbers, Monograf. Mat. 34, PWN, Warszawa, 1958.