This is the first part of the work studying the family of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of and give a detailed study of the subfamily consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in from Newton maps to maps with so-called exotic basins.
@article{bwmeta1.element.bwnjournal-article-fmv158i3p249bwm, author = {Krzysztof Bara\'nski}, title = {From Newton's method to exotic basins Part I: The parameter space}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {249-288}, zbl = {1014.37033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p249bwm} }
Barański, Krzysztof. From Newton’s method to exotic basins Part I: The parameter space. Fundamenta Mathematicae, Tome 158 (1998) pp. 249-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p249bwm/
[00000] [Ba] K. Barański, Connectedness of the basin of attraction for rational maps, Proc. Amer. Math. Soc. (6) 126 (1998), 1857-1866. | Zbl 0898.58043
[00001] [BH] B. Branner and J. Hubbard, The iteration of cubic polynomials, II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325. | Zbl 0812.30008
[00002] [CGS] J. H. Curry, L. Garnett and D. Sullivan, On the iteration of a rational function: computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277. | Zbl 0524.65032
[00003] [DH1] A. Douady et J. H. Hubbard, Etude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavours, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984-1985.
[00004] [DH2] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343. | Zbl 0587.30028
[00005] [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58. | Zbl 0671.30023
[00006] [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell University, Ithaca, 1987.
[00007] [MSS] R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), 193-217.
[00008] [Mi1] J. Milnor, Dynamics in one complex variable: introductory lectures, preprint, SUNY at Stony Brook, IMS # 1990/5.
[00009] [Mi2] J. Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), 37-83. | Zbl 0922.58062
[00010] [P1] F. Przytycki, Iterations of rational functions: which hyperbolic components contain polynomials?, Fund. Math. 149 (1996), 95-118. | Zbl 0852.58052
[00011] [P2] F. Przytycki, Remarks on simple-connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235.
[00012] [Re1] M. Rees, A partial description of parameter space of rational maps of degree two, I: Acta Math. 168 (1992), 11-87; II: Proc. London Math. Soc. (3) 70 (1995), 644-690. | Zbl 0774.58035
[00013] [Re2] M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), 357-382. | Zbl 0712.30022
[00014] [Ro] P. Roesch, Topologie locale des méthodes de Newton cubiques, Ph.D. thesis, École Norm. Sup. de Lyon, 1997.
[00015] [Se] G. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72. | Zbl 0427.55006
[00016] [Sh] M. Shishikura, The connectivity of the Julia set of rational maps and fixed points, preprint, Inst. Hautes Études Sci., Bures-sur-Yvette, 1990.
[00017] [Ta] Tan, Branched coverings and cubic Newton maps, Fund. Math. 154 (1997), 207-260. | Zbl 0903.58029