We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a -valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.
@article{bwmeta1.element.bwnjournal-article-fmv158i3p241bwm,
author = {Robert Cauty},
title = {Sur les r\'etractes absolus Pn -valu\'es de dimension finie},
journal = {Fundamenta Mathematicae},
volume = {158},
year = {1998},
pages = {241-248},
zbl = {0942.54014},
language = {fra},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p241bwm}
}
Cauty, Robert. Sur les rétractes absolus Pn -valués de dimension finie. Fundamenta Mathematicae, Tome 158 (1998) pp. 241-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p241bwm/
[00000] [1] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273. | Zbl 0043.16901
[00001] [2] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483. | Zbl 0113.37705
[00002] [3] R. Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
[00003] [4] R. Cauty, Quelques problèmes sur les groupes contractiles et la théorie des rétractes, Mat. Studii 3 (1994), 111-116.
[00004] [5] W. E. Haveri, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284