Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.
@article{bwmeta1.element.bwnjournal-article-fmv158i3p195bwm, author = {Bronis\l aw Wajnryb}, title = {Mapping class group of a handlebody}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {195-228}, zbl = {0928.57013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p195bwm} }
Wajnryb, Bronisław. Mapping class group of a handlebody. Fundamenta Mathematicae, Tome 158 (1998) pp. 195-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i3p195bwm/
[00000] [1] Bergau, P. und Mennicke, J., Über topologische Abbildungen der Bretzelfläche vom Geschlecht 2, Math. Z. 74 (1960), 414-435.
[00001] [2] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1974.
[00002] [3] Birman, J. S. and Hilden, H., On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, 1971, 81-115. | Zbl 0217.48602
[00003] [4] Dehn, M., Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206. | Zbl 64.1276.01
[00004] [5] Epstein, D. B. A., Curves on 2-manifolds and isotopies, ibid. 115 (1966), 83-107. | Zbl 0136.44605
[00005] [6] Harer, J., The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239. | Zbl 0533.57003
[00006] [7] Hatcher, A. and Thurston, W., A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237. | Zbl 0447.57005
[00007] [8] Heusner, M., Eine Präsentation der Abbildungsklassengruppe einer geschlossenen, orientierbaren Fläche, Diplomarbeit, University of Frankfurt.
[00008] [9] Humphries, S., Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, Lecture Notes in Math. 722, Springer, 1979, 44-47.
[00009] [10] Johnson, D., Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119-125. | Zbl 0407.57003
[00010] [11] Laudenbach, F., Présentation du groupe de difféotopies d'une surface compacte orientable, in: Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979), 267-282.
[00011] [12] Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778. | Zbl 0131.20801
[00012] [13] Suzuki, S., On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977), 111-124. | Zbl 0339.57001
[00013] [14] Wajnryb, B., A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174. | Zbl 0533.57002