For a polynomial with one critical point (maybe multiple), which does not have attracting or neutral periodic orbits, we prove that the backward dynamics is stable provided the Julia set is locally connected. The latter is proved to be equivalent to the non-existence of a wandering continuum in the Julia set or to the shrinking of Yoccoz puzzle-pieces to points.
@article{bwmeta1.element.bwnjournal-article-fmv158i2p97bwm, author = {Genadi. Levin}, title = {On backward stability of holomorphic dynamical systems}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {97-107}, zbl = {0915.58089}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p97bwm} }
Levin, Genadi. On backward stability of holomorphic dynamical systems. Fundamenta Mathematicae, Tome 158 (1998) pp. 97-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p97bwm/
[00000] [BH] B. Branner and J. H. Hubbard, The iteration of cubic polynomials, Part II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325. | Zbl 0812.30008
[00001] [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Math. 25 (1994), 1-30.
[00002] [DH] A. Douady et J. H. Hubbard, Etude dynamique des polynômes complexes I, II, Publ. Math. Orsay 84-02, 85-04.
[00003] [F] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271. | Zbl 47.0921.02
[00004] [H] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, preprint, IHES/M/92/79 (1992). | Zbl 0797.58049
[00005] [Ki] J. Kiwi, Rational rays and critical portraits of complex polynomials, thesis, Stony Brook, 1997.
[00006] [LvS] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. 147 (1998), 471-541. | Zbl 0941.37031
[00007] [Ly] M. Lyubich, Geometry of quadratic polynomials: moduli, rigidity and local connectivity, Acta Math. 178 (1997), 185-297.
[00008] [Ma] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Math. 24 (1993), 1-11. | Zbl 0781.30023
[00009] [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
[00010] [Mi1] J. Milnor, Dynamics in one complex variable: introductory lectures, Stony Brook Preprint 1990/5.
[00011] [Mi2] J. Milnor, Local connectivity of Julia sets: expository lectures, Stony Brook Preprint 1992/11.
[00012] [Pr] F. Przytycki, Iteration of holomorphic Collet-Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc. 352 (1998), 717-742. | Zbl 0892.58063
[00013] [P-M] R. Pérez-Marco, Topology of Julia sets and hedgehogs, Orsay, preprint 94-48 (1994).
[00014] [R] P. Roesch, thesis, Lyon, 1997.
[00015] [Th] W. Thurston, The combinatorics of iterated rational maps, preprint, 1984.
[00016] [Y] J.-C. Yoccoz, Sur la connectivité locale de M, 1989.