Let X be a Polish space, and let be a sequence of hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether is a true subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true .
@article{bwmeta1.element.bwnjournal-article-fmv158i2p181bwm, author = {Etienne Matheron}, title = {How to recognize a true $\Sigma$^0\_3 set}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {181-194}, zbl = {0919.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p181bwm} }
Matheron, Etienne. How to recognize a true Σ^0_3 set. Fundamenta Mathematicae, Tome 158 (1998) pp. 181-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p181bwm/
[00000] [GMG] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
[00001] [G] M. B. Gregory, p-Helson sets, 1 < p < 2, Israel J. Math. 12 (1972), 356-368.
[00002] [Ke1] A. S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, ibid. 73 (1991), 189-198.
[00003] [Ke2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
[00004] [KL] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. | Zbl 0642.42014
[00005] [LP] L.-A. Lindahl and A. Poulsen, Thin Sets in Harmonic Analysis, Marcel Dekker, New York, 1971.
[00006] [Li] T. Linton, The H-sets of the unit circle are properly , Real Anal. Exchange 19 (1994), 203-211.
[00007] [Ly] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458. | Zbl 0677.42006
[00008] [M] E. Matheron, The descriptive complexity of Helson sets, Illinois J. Math. 39 (1995), 608-625. | Zbl 0843.43004
[00009] [T] V. Tardivel, Fermés d'unicité dans les groupes abéliens localement compacts, Studia Math. 91 (1988), 1-15. | Zbl 0666.43002