Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism C(S) → C(X) is integral and flat.
@article{bwmeta1.element.bwnjournal-article-fmv158i2p165bwm, author = {M. Mulero}, title = {Algebraic characterization of finite (branched) coverings}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {165-180}, zbl = {0912.54018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p165bwm} }
Mulero, M. Algebraic characterization of finite (branched) coverings. Fundamenta Mathematicae, Tome 158 (1998) pp. 165-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p165bwm/
[00000] [1] M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[00001] [2] R. L. Blair and A. W. Hagger, Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41-52. | Zbl 0264.54011
[00002] [3] N. Bourbaki, Algèbre Commutative, Chs. 1 and 2, Hermann, 1961.
[00003] [4] V. I. Danilov, Algebraic varieties and schemes, in: Algebraic Geometry I, I. R. Shafarevich (ed.), Encyclopaedia Math. Sci. 23, Springer, 1994. | Zbl 0682.14002
[00004] [5] R. Engelking, General Topology, Heldermann, 1989.
[00005] [6] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976. | Zbl 0327.46040
[00006] [7] K. R. Goodearl, Local isomorphisms of algebras of continuous functions, J. London Math. Soc. (2) 16 (1977), 348-356. | Zbl 0381.54005
[00007] [8] A. Grothendieck, Éléments de Géométrie Algébrique IV, Inst. Hautes Études Sci. Publ. Math. 28 (1966).
[00008] [9] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480. | Zbl 0149.40501
[00009] [10] L. F. McAuley and E. E. Robinson, Discrete open and closed maps on generalized continua and Newman's property, Canad. J. Math. 36 (1984), 1081-1112. | Zbl 0552.54005
[00010] [11] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
[00011] [12] W. S. Massey, Algebraic Topology: An Introduction, Springer, 1967.
[00012] [13] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986. | Zbl 0603.13001
[00013] [14] M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66. | Zbl 0840.54020
[00014] [15] M. A. Mulero, Rings of continuous functions and the branch set of a covering, Proc. Amer. Math. Soc. 126 (1998), 2183-2189. | Zbl 0893.54008
[00015] [16] J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972. | Zbl 0251.58001