We continue the earlier research of [1]. In particular, we work out a class of regular interstices and show that selective types are realized in regular interstices. We also show that, contrary to the situation above definable elements, the stabilizer of an element inside M(0) whose type is selective need not be maximal.
@article{bwmeta1.element.bwnjournal-article-fmv158i2p125bwm, author = {Teresa Bigorajska and Henryk Kotlarski and James Schmerl}, title = {On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {125-146}, zbl = {0920.03069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p125bwm} }
Bigorajska, Teresa; Kotlarski, Henryk; Schmerl, James. On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic. Fundamenta Mathematicae, Tome 158 (1998) pp. 125-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p125bwm/
[00000] [1] N. Bamber and H. Kotlarski, On interstices in countable arithmetically saturated models of Peano Arithmetic, Math. Logic Quart. 43 (1997), 525-540. | Zbl 0884.03042
[00001] [2] T. Bigorajska and H. Kotlarski, A partition theorem for α-large sets, to appear. | Zbl 0933.03055
[00002] [3] P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255.
[00003] [4] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, 1990.
[00004] [5] A. Grzegorczyk, Some classes of recursive functions, Dissertationes Math. 4 (1953). | Zbl 0052.24902
[00005] [6] P. Hájek and P. Pudlák, Metamathematics of First Order Arithmetic, Perspect. Math. Logic, Springer, 1993. | Zbl 0781.03047
[00006] [7] R. Kaye, Models of Peano Arithmetic, Oxford Logic Guides, Oxford Univ. Press, 1991. | Zbl 0744.03037
[00007] [8] R. Kaye, R. Kossak and H. Kotlarski, Automorphisms of recursively saturated models of arithmetic, Ann. Pure Appl. Logic 55 (1991), 67-91. | Zbl 0748.03023
[00008] [9] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981), 267-314. | Zbl 0494.03027
[00009] [10] R. Kossak, H. Kotlarski and J. Schmerl, On maximal subgroups of the automorphism group of a countable recursively saturated model of Peano arithmetic, Ann. Pure Appl. Logic 65 (1993), 125-148. | Zbl 0796.03043
[00010] [11] R. Kossak and J. Schmerl, The automorphism group of an arithmetically saturated model of Peano arithmetic, J. London Math. Soc. (2) 52 (1995), 235-244. | Zbl 0905.03024
[00011] [12] R. Kossak and J. Schmerl, Arithmetically saturated models of arithmetic, Notre Dame J. Formal Logic 36 (1995), 531-546. | Zbl 0848.03017
[00012] [13] H. Kotlarski, On elementary cuts in recursively saturated models of arithmetic, Fund. Math. 120 (1984), 205-222. | Zbl 0572.03016
[00013] [14] H. Kotlarski, Automorphisms of countable recursively saturated models of PA: a survey, Notre Dame J. Formal Logic 36 (1995), 505-518. | Zbl 0848.03015
[00014] [15 H. Kotlarski and R. Kaye, Automorphisms of models of True Arithmetic: recognising some basic open subgroups, ibid. 35 (1994), 1-14. | Zbl 0824.03016
[00015] [16] H. Kotlarski and Z. Ratajczyk, Inductive full satisfaction classes, Ann. Pure Appl. Logic 47 (1990), 199-223. | Zbl 0708.03014
[00016] [17] H. Kotlarski and Z. Ratajczyk, More on induction in the language with a satisfaction class, Z. Math. Logik 36 (1990), 441-454. | Zbl 0723.03033
[00017] [18] W. Pohlers, Proof Theory, Lecture Notes in Math. 1047, Springer, 1989.
[00018] [19] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in , Fund. Math. 130 (1988), 191-213.
[00019] [20] Z. Ratajczyk, Subsystems of true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic 64 (1993), 95-152. | Zbl 0802.03036
[00020] [21] H. Rogers, The Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967. | Zbl 0183.01401
[00021] [22] D. Scott, Algebras of sets binumerable in complete extensions of arithmetic, in: Recursive Function Theory, Amer. Math. Soc., Providence, 1962, 117-121.
[00022] [23] R. Sommer, Transfinite induction within Peano arithmetic, Ann. Pure Appl. Logic 76 (1995), 231-289. | Zbl 0858.03056