Decomposition of group-valued measures on orthoalgebras
De Lucia, Paolo ; Morales, Pedro
Fundamenta Mathematicae, Tome 158 (1998), p. 109-124 / Harvested from The Polish Digital Mathematics Library

We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra L with values in an ordered topological group G, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212306
@article{bwmeta1.element.bwnjournal-article-fmv158i2p109bwm,
     author = {Paolo De Lucia and Pedro Morales},
     title = {Decomposition of group-valued measures on orthoalgebras},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {109-124},
     zbl = {0917.28009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p109bwm}
}
De Lucia, Paolo; Morales, Pedro. Decomposition of group-valued measures on orthoalgebras. Fundamenta Mathematicae, Tome 158 (1998) pp. 109-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i2p109bwm/

[00000] [1] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 1, Mat. Sb. 8 (50) (1940), 307-348. | Zbl 66.0218.01

[00001] [2] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 2, ibid. 9 (51) (1941), 563-628.

[00002] [3] E. G. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981. | Zbl 0491.03023

[00003] [4] A. Bigard, K. Keimel et S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math. 608, Springer, New York, 1977. | Zbl 0384.06022

[00004] [5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Providence, R.I., 1967.

[00005] [6] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843. | Zbl 0015.14603

[00006] [7] P. De Lucia and P. Morales, Non-commutative version of the Alexandroff Decomposition Theorem in ordered topological groups, preprint no. 51, Univ. of Naples, 1993, 21 pp.

[00007] [8] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer, Dordrecht, 1993.

[00008] [9] A. Dvurečenskij and B. Riečan, Decomposition of measures on orthoalgebras and difference posets, Internat. J. Theoret. Phys. 33 (1994), 1387-1402. | Zbl 0815.03038

[00009] [10] D. Feldman and A. Wilce, σ-Additivity in manuals and orthoalgebras, Order 10 (1993), 383-392.

[00010] [11] D. J. Foulis and M. K. Bennett, Tensor product of orthoalgebras, ibid., 271-282. | Zbl 0798.06015

[00011] [12] D. J. Foulis, R. J. Greechie and G. T. Rüttimann, Filters and supports in orthalgebras, Internat. J. Theoret. Phys. 31 (1992), 789-807. | Zbl 0764.03026

[00012] [13] F. Garcia-Mazario, Ordered topological group-valued measures on orthoalgebras, doctoral dissertation, UNED, 1995 (in Spanish).

[00013] [14] E. D. Habil, Brooks-Jewett and Nikodym convergence theorems for orthoalgebras that have the weak subsequential property, Internat. J. Theoret. Phys. 34 (1995), 465-491. | Zbl 0822.60004

[00014] [15] G. Jameson, Ordered Linear Spaces, Lecture Notes in Math. 141, Springer, New York, 1970. | Zbl 0196.13401

[00015] [16] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.

[00016] [17] J. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1985.

[00017] [18] G. W. Mackey, The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1963. | Zbl 0114.44002

[00018] [19] S. Maeda, Probability measures on projections in von Neumann algebras, Rev. Math. Phys. 1 (1990), 235-290. | Zbl 0718.46046

[00019] [20] P. Morales and F. Garcia-Mazario, The support of a measure in ordered topological groups, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 179-221. | Zbl 0889.28008

[00020] [21] G. T. Rüttimann, Non-commutative measure theory, Habilitationsschrift, Universität Bern, 1980.

[00021] [22] G. T. Rüttimann, The approximate Jordan-Hahn decomposition, Canad. J. Math. 41 (1989), 1124-1146. | Zbl 0699.28001

[00022] [23] K. Sundaresan and P. W. Day, Regularity of group valued Baire and Borel measures, Proc. Amer. Math. Soc. 36 (1972), 609-612. | Zbl 0263.28009

[00023] [24] V. S. Varadarajan, Geometry of Quantum Theory, 2nd ed., Springer, Berlin, 1985. | Zbl 0581.46061

[00024] [25] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. | Zbl 0046.05401