Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.
@article{bwmeta1.element.bwnjournal-article-fmv158i1p23bwm, author = {Janusz Prajs}, title = {Continuous decompositions of Peano plane continua into pseudo-arcs}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {23-40}, zbl = {0929.54023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i1p23bwm} }
Prajs, Janusz. Continuous decompositions of Peano plane continua into pseudo-arcs. Fundamenta Mathematicae, Tome 158 (1998) pp. 23-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i1p23bwm/
[00000] [1] A R. D. Anderson, On collections of pseudo-arcs, Abstract 337t, Bull. Amer. Math. Soc. 56 (1950), 350.
[00001] [2] W. Bajguz, Remark on embedding curves in surfaces, preprint.
[00002] [3] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. | Zbl 0043.16803
[00003] [4] K. Borsuk, On embedding curves into surfaces, Fund. Math. 59 (1966), 73-89.
[00004] [5] M. Brown, Continuous collections of higher dimensional continua, Ph.D. thesis, University of Wisconsin, 1958.
[00005] [6] C J. J. Charatonik, Mappings of the Sierpiński curve onto itself, Proc. Amer. Math. Soc. 92 (1984), 125-132. | Zbl 0524.54010
[00006] [7] C J. J. Charatonik, Generalized homogeneity of the Sierpiński universal plane curve, in: Topology. Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, 1985, 153-158.
[00007] [8] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286. | Zbl 48.0212.01
[00008] [9] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (1996), 147-156. | Zbl 0867.54020
[00009] [10] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), 47-52. | Zbl 0860.54028
[00010] [11] W. Lewis, Pseudo-arc of pseudo-arcs is unique, Houston J. Math. 10 (1984), 227-234. | Zbl 0543.54029
[00011] [12] W. Lewis, Continuous curves of pseudo-arcs, ibid. 11 (1985), 225-236.
[00012] [13] W. Lewis, Observations on the pseudo-arc, Topology Proc. 9 (1984), 329-337. | Zbl 0577.54038
[00013] [14] W. Lewis, Continuous collections of hereditarily indecomposable continua, Topology Appl. 74 (1996), 169-176. | Zbl 0890.54009
[00014] [15] W. Lewis, The pseudo-arc, in: Contemp. Math. 117, Amer. Math. Soc. 1991, 103-123. | Zbl 0736.54027
[00015] [16] W. Lewis, Another characterization of the pseudo-arc, Bull. Polish Acad. Sci., to appear. | Zbl 0945.54028
[00016] [17] W. Lewis and J. J. Walsh, A continuous decomposition of the plane into pseudo-arcs, Houston J. Math. 4 (1978), 209-222. | Zbl 0393.54007
[00017] [18] M R. L. Moore, Concerning upper semicontinuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416-428. | Zbl 51.0464.03
[00018] [19] S. Mazurkiewicz, Sur les continus homogènes, Fund. Math. 5 (1924), 137-146.
[00019] [20] J. R. Prajs, A continuous circle of pseudo-arcs filling up the annulus, Trans. Amer. Math. Soc., to appear. | Zbl 0936.54019
[00020] [21] C. R. Seaquist, A continuous decomposition of the Sierpiński curve, in: Continua (Cincinnati, Ohio, 1994), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, 1995, 315-342.
[00021] [22] C. R. Seaquist, Monotone open homogeneity of the Sierpiński curve, Topology Appl., to appear. | Zbl 0923.54012
[00022] [23] W G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. | Zbl 0081.16904
[00023] [24] Y G. S. Young, Characterization of 2-manifolds, Duke Math. J. 14 (1947), 979-990. | Zbl 0029.23204