We prove that if M is an o-minimal structure whose underlying order is dense then Th(M) does not interpret the theory of an infinite discretely ordered structure. We also make a conjecture concerning the class of the theory of an infinite discretely ordered o-minimal structure.
@article{bwmeta1.element.bwnjournal-article-fmv158i1p19bwm, author = {Ricardo Bianconi}, title = {A note on noninterpretability in o-minimal structures}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {19-22}, zbl = {0915.03033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv158i1p19bwm} }
Bianconi, Ricardo. A note on noninterpretability in o-minimal structures. Fundamenta Mathematicae, Tome 158 (1998) pp. 19-22. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv158i1p19bwm/
[00000] [1] L. van den Dries, Tame Topology and O-minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1998.
[00001] [2] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. | Zbl 0662.03024
[00002] [3] J. Krajíček, Some theorems on the lattice of local interpretability types, Z. Logik Grundlagen Math. 31 (1985), 449-460. | Zbl 0559.03034
[00003] [4] J. Mycielski, P. Pudlák and A. Stern, A lattice of chapters of mathematics (interpretations between theorems), Mem. Amer. Math. Soc. 426 (1990). | Zbl 0696.03030
[00004] [5] A. Pillay, Some remarks on definable equivalence relations in o-minimal structures, J. Symbolic Logic 51 (1986), 709-714. | Zbl 0632.03028
[00005] [6] A. Pillay and C. Steinhorn, Discrete o-minimal structures, Ann. Pure Appl. Logic 34 (1987), 275-289.
[00006] [7] A. Pillay and C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. | Zbl 0662.03023
[00007] [8] A. Pillay and C. Steinhorn, Definable sets in ordered structures III, ibid. 309 (1988), 469-476. | Zbl 0707.03024
[00008] [9] S. Świerczkowski, Order with successors is not interpretable in RCF, Fund. Math. 143 (1993), 281-285. | Zbl 0794.03018