We study the centraliser of locally compact group extensions of ergodic probability preserving transformations. New methods establishing ergodicity of group extensions are introduced, and new examples of squashable and non-coalescent group extensions are constructed.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p99bwm, author = {Jon Aaronson and Mariusz Lema\'nczyk and Dalibor Voln\'y}, title = {A cut salad of cocycles}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {99-119}, zbl = {0966.28010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p99bwm} }
Aaronson, Jon; Lemańczyk, Mariusz; Volný, Dalibor. A cut salad of cocycles. Fundamenta Mathematicae, Tome 158 (1998) pp. 99-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p99bwm/
[00000] [A1] J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Anal. Math. 39 (1981), 203-234. | Zbl 0499.28013
[00001] [A2] J. Aaronson, The intrinsic normalising constants of transformations preserving infinite measures, ibid. 49 (1987), 239-270. | Zbl 0644.28013
[00002] [A-L-M-N] J. Aaronson, M. Lemańczyk, C. Mauduit and H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, in: Algorithms, Fractals and Dynamics (Okayama and Kyoto, 1992), Y. Takahashi (ed.), Plenum, New York, 1995, 27-50. | Zbl 0878.28009
[00003] [A-L-V] J. Aaronson, M. Lemańczyk and D. Volný, A salad of cocycles, preprint, internet: http://www.math.tau.ac.il/~aaro, 1995.
[00004] [D] A. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151. | Zbl 0919.28015
[00005] [F-M] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
[00006] [G-L-S] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math. 123 (1997), 209-228. | Zbl 0887.28008
[00007] [G-S] V. I. Golodets and S. D. Sinel'shchikov, Locally compact groups appearing as ranges of cocycles of ergodic ℤ-actions, Ergodic Theory Dynam. Systems 5 (1985), 45-57.
[00008] [H] P. Halmos, Lectures on Ergodic Theory, Chelsea, New York, 1953.
[00009] [H-P] F. Hahn and W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectrum, Math. Systems Theory 2 (1968), 179-190. | Zbl 0167.32902
[00010] [H-O-O] T. Hamachi, Y. Oka and M. Osikawa, A classification of ergodic non-singular transformation groups, Mem. Fac. Sci. Kyushu Univ. Ser. A 28 (1974), 113-133. | Zbl 0293.28011
[00011] [K-W] Y. Katznelson and B. Weiss, Commuting measure preserving transformations, Israel J. Math. 12 (1972), 161-172. | Zbl 0239.28014
[00012] [K] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19-70. | Zbl 0332.46045
[00013] [L-L-T] M. Lemańczyk, P. Liardet and J-P. Thouvenot, Coalescence of circle extensions of measure preserving transformations, Ergodic Theory Dynam. Systems 12 (1992), 769-789. | Zbl 0785.58030
[00014] [L-V] P. Liardet and D. Volný, Sums of continuous and differentiable functions in dynamical systems, Israel J. Math. 98 (1997), 29-60. | Zbl 0881.28012
[00015] [L] D. Lind, Locally compact measure preserving flows, Adv. Math. 15 (1975), 175-193. | Zbl 0293.28012
[00016] [M] D. Maharam, Incompressible transformations, Fund. Math. 56 (1964), 35-50. | Zbl 0133.00304
[00017] [M-S] C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. | Zbl 0428.28014
[00018] [O] D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Math. Monographs 5, Yale Univ. Press, New Haven, 1974.
[00019] [O-W] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1-142.
[00020] [R] D. Rudolph, Classifying the isometric extensions of a Bernoulli shift, ibid. 34 (1978), 36-60. | Zbl 0415.28012
[00021] [S] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977. | Zbl 0421.28017
[00022] [Z] R. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350-372. | Zbl 0391.28011