We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p305bwm, author = {Maciej Wojtkowski}, title = {Hamiltonian systems with linear potential and elastic constraints}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {305-341}, zbl = {0922.58024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p305bwm} }
Wojtkowski, Maciej. Hamiltonian systems with linear potential and elastic constraints. Fundamenta Mathematicae, Tome 158 (1998) pp. 305-341. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p305bwm/
[00000] [L-W] N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1966), 19-44. | Zbl 0853.58081
[00001] [O-W] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[00002] [O] J. Cheng and M. P. Wojtkowski, Linear stability of a periodic orbit in the system of falling balls, in: The Geometry of Hamiltonian Systems (Berkeley, Calif., 1989), Math. Sci. Res. Inst. Publ. 22, Springer, 1991, 53-71. | Zbl 0742.58017
[00003] [KS] A. Katok and J.-M. Strelcyn (with the collaboration of F. Ledrappier and F. Przytycki), Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math. 1222, Springer, 1986.
[00004] [L-M] H. E. Lehtihet and B. N. Miller, Numerical study of a billiard in a gravitational field, Phys. D 21 (1986), 93-104. | Zbl 0607.70011
[00005] [L-W] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, in: Dynamics Reported (N.S.) 4, Springer, 1995, 130-202. | Zbl 0824.58033
[00006] [O-W] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441-456. | Zbl 0915.58076
[00007] [O] V. I. Oseledets, A multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. | Zbl 0236.93034
[00008] [R-M] C. J. Reidl and B. N. Miller, Gravity in one dimension: The critical population, Phys. Rev. E 48 (1993), 4250-4256.
[00009] [Ro] B. A. Rozenfel'd, Multidimensional Spaces, Nauka, Moscow, 1966 (in Russian).
[00010] [R] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES 50 (1979), 27-58. | Zbl 0426.58014
[00011] [S] N. Simányi, The characteristic exponents of the falling ball model, Comm. Math. Phys. 182 (1996), 457-468. | Zbl 0871.58046
[00012] [W1] M. P. Wojtkowski, A system of one dimensional balls with gravity, ibid. 126 (1990), 507-533.
[00013] [W2] M. P. Wojtkowski, The system of one dimensional balls in an external field. II, ibid. 127 (1990), 425-432.
[00014] [W3] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Lecture Notes in Math. 1486, Springer, 1991, 243-262. | Zbl 0744.58023