Parabolic perturbations of Hamilton–Jacobi equations
Sinai, Yakov
Fundamenta Mathematicae, Tome 158 (1998), p. 299-303 / Harvested from The Polish Digital Mathematics Library

We consider a parabolic perturbation of the Hamilton-Jacobi equation where the potential is periodic in space and time. We show that any solution converges to a limit not depending on initial conditions.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212294
@article{bwmeta1.element.bwnjournal-article-fmv157i2p299bwm,
     author = {Yakov Sinai},
     title = {Parabolic perturbations of Hamilton--Jacobi equations},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {299-303},
     zbl = {0918.70010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p299bwm}
}
Sinai, Yakov. Parabolic perturbations of Hamilton–Jacobi equations. Fundamenta Mathematicae, Tome 158 (1998) pp. 299-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p299bwm/

[00000] [A] S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase, Phys. D 7 (1983), 240-258. | Zbl 0559.58013

[00001] [JKM] H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, preprint, ETH, Zürich, 1997. | Zbl 0930.35156

[00002] [M] J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), 457-467. | Zbl 0506.58032

[00003] [S] Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Statist. Phys. 64 (1991), 1-12. | Zbl 0978.35500