We prove real bounds for interval maps with one reflecting critical point.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p287bwm, author = {Genadi. Levin}, title = {Bounds for maps of an interval with one reflecting critical point. I}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {287-298}, zbl = {0915.58028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p287bwm} }
Levin, Genadi. Bounds for maps of an interval with one reflecting critical point. I. Fundamenta Mathematicae, Tome 158 (1998) pp. 287-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p287bwm/
[00000] [LS1] G. Levin and S. van Strien, Bounds for maps of an interval with one reflecting critical point. II, in preparation.
[00001] [LS2] G. Levin and S. van Strien, Total disconnectedness of the Julia set of real polynomials, preprint IHES, 1996/68 (1996).
[00002] [LS3] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math., to appear. | Zbl 0941.37031
[00003] [Ma] M. Martens, Interval dynamics, thesis, Delft, 1990.
[00004] [MS] V. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993. | Zbl 0791.58003
[00005] [S] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, in: AMS Centennial Publications, Vol. II, Amer. Math. Soc., 1992, 417-466. | Zbl 0936.37016