Inverse limit of M -cocycles and applications
Kwiatkowski, Jan
Fundamenta Mathematicae, Tome 158 (1998), p. 261-276 / Harvested from The Polish Digital Mathematics Library

For any m, 2 ≤ m < ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and C(T)/wclTn:n=

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212291
@article{bwmeta1.element.bwnjournal-article-fmv157i2p261bwm,
     author = {Jan Kwiatkowski},
     title = {Inverse limit of M -cocycles and applications},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {261-276},
     zbl = {0918.28016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p261bwm}
}
Kwiatkowski, Jan. Inverse limit of M -cocycles and applications. Fundamenta Mathematicae, Tome 158 (1998) pp. 261-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p261bwm/

[00000] [Ch] R. V. Chacon, A geometric construction of measure preserving transformations, in: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Part 2, Univ. of California Press, 1965, 335-360.

[00001] [Fe1] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), 35-51. | Zbl 0535.28010

[00002] [Fe2] S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65. | Zbl 0883.28014

[00003] [FeKw] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity, Studia Math. 102 (1992), 121-144. | Zbl 0809.28013

[00004] [FeKwMa] S. Ferenczi, J. Kwiatkowski and C. Mauduit, A density theorem for (multiplicity, rank) pairs, J. Anal. Math. 65 (1995), 45-75. | Zbl 0833.28010

[00005] [FiKw] I. Filipowicz and J. Kwiatkowski, Rank, covering number and simple spectrum, ibid. 66 (1995), 185-215. | Zbl 0849.28008

[00006] [GoKwLeLi] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174. | Zbl 0830.28009

[00007] [GoLe] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, ibid. 96 (1990), 219-230. | Zbl 0711.28007

[00008] [dJ] A. del Junco, A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977), 655-663. | Zbl 0335.28010

[00009] [Kin] J. King, The commutant is the weak closure of the powers, for rank 1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-385.

[00010] [KwLa1] J. Kwiatkowski and Y. Lacroix, Multiplicity rank pairs, J. Anal. Math., to appear. | Zbl 0894.28008

[00011] [KwLa2] J. Kwiatkowski and Y. Lacroix, Finite rank transformations and weak closure theorem, preprint. | Zbl 1198.37009

[00012] [KwRo] J. Kwiatkowski and T. Rojek, A method of solving a cocycle functional equation and applications, Studia Math. 99 (1991), 69-86. | Zbl 0734.28016

[00013] [KwSi] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. | Zbl 0624.28014

[00014] [M1] M. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. Math. 35 (1987), 417-424. | Zbl 0675.28006

[00015] [M2] M. Mentzen, thesis, preprint no. 2/89, Nicholas Copernicus University, Toruń, 1989.

[00016] [Pa] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. | Zbl 0184.26901

[00017] [R1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. | Zbl 0519.28008

[00018] [R2] E. A. Robinson, Mixing and spectral multiplicity, Ergodic Theory Dynam. Systems 5 (1985), 617-624. | Zbl 0565.28013

[00019] [dlR] T. de la Rue, Rang des systèmes dynamiques Gaussiens, preprint, Rouen, 1996.