Let T be a finite entropy, aperiodic automorphism of a nonatomic probability space. We give an elementary proof of the existence of a finite entropy, countable generating partition for T.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p255bwm, author = {Michael Keane and Jacek Serafin}, title = {On the countable generator theorem}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {255-259}, zbl = {0915.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p255bwm} }
Keane, Michael; Serafin, Jacek. On the countable generator theorem. Fundamenta Mathematicae, Tome 158 (1998) pp. 255-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p255bwm/
[00000] [Bill] Billingsley, P., Ergodic Theory and Information, Wiley, 1965. | Zbl 0141.16702
[00001] [Pa] Parry, W., Generators and strong generators in ergodic theory, Bull. Amer. Math. Soc. 72 (1966), 294-296. | Zbl 0144.29802
[00002] [Ro] Rokhlin, V., Generators in ergodic theory, II, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1965, 68-72 (in Russian).
[00003] [Se] Serafin, J., Finitary codes and isomorphisms, Ph.D. Thesis, Technische Universiteit Delft, 1996. | Zbl 1042.94533
[00004] [Wa] Walters, P., An Introduction to Ergodic Theory, Springer, 1982.