Let f be a continuous map of the circle or the interval I into itself, piecewise , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least periodic points of period with large derivative along the period, for some subsequence of natural numbers. For a strictly monotone map f without critical points we show the existence of at least such points.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p245bwm, author = {A. Katok and A. Mezhirov}, title = {Entropy and growth of expanding periodic orbits for one-dimensional maps}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {245-254}, zbl = {0915.58025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p245bwm} }
Katok, A.; Mezhirov, A. Entropy and growth of expanding periodic orbits for one-dimensional maps. Fundamenta Mathematicae, Tome 158 (1998) pp. 245-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p245bwm/
[00000] [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Sci., Singapore, 1993. | Zbl 0843.58034
[00001] [BKP] L. Barreira, A. Katok and Ya. Pesin, Non-Uniformly Hyperbolic Dynamical Systems, monograph in preparation.
[00002] [Bu] J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. | Zbl 0889.28009
[00003] [GS] P. Góra et B. Schmitt, Un exemple de transformation dilatante et par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), 101-113. | Zbl 0672.58023
[00004] [Ho] F. Hofbauer, The structure of piecewise monotonic transformations, ibid. 1 (1981), 159-178. | Zbl 0474.28007
[00005] [K1] A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. Math. IHES 51 (1980), 137-173. | Zbl 0445.58015
[00006] [K2] A. Katok, Entropy and closed geodesics, Ergodic Theory Dynam. Systems 2 (1982), 339-367.
[00007] [KH] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, New York, 1995. | Zbl 0878.58020
[00008] [KM] A. Katok and L. Mendoza, Dynamical systems with non-uniformly hyperbolic structure, supplement to [KH], 659-700.
[00009] [Kn] G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, preprint, 1996.
[00010] [KT] T. Krüger and S. Troubetzkoy, Markov partitions and shadowing for diffeomorphisms with no zero exponents, preprint, 1997.
[00011] [LY] T.-Y. Li and J. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183-192. | Zbl 0371.28017
[00012] [Li] D. Lind, Perturbations of shifts of finite type, SIAM J. Discrete Math. 2 (1989), 350-365. | Zbl 0676.58045
[00013] [MlT] J. Milnor and W. Thurston, On iterated maps of the interval, in: Dynamical Systems (College Park, Md., 1986-87), Lecture Notes in Math. 1342, Springer, Berlin, 1988, 465-563.
[00014] [M1] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 27 (1979), 167-169. | Zbl 0459.54031
[00015] [M2] M. Misiurewicz, Continuity of entropy revisited, in: Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Sci., 1995, 495-503. | Zbl 0901.28014
[00016] [MS1] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Astérisque 50 (1977), 299-310. | Zbl 0376.54019
[00017] [MS2] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. | Zbl 0445.54007
[00018] [P] Ya. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), 55-114.
[00019] [Pu] C. C. Pugh, The hypothesis in Pesin theory, Publ. Math. IHES 59 (1984), 143-161.
[00020] [Q] A. Quas, Invariant densities for maps, Studia Math. 120 (1996), 83-88. | Zbl 0858.58030