Transformations T:[0,1] → [0,1] with two monotonic pieces are considered. Under the assumption that T is topologically transitive and , it is proved that the invariant measures concentrated on periodic orbits are dense in the set of all invariant probability measures.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p221bwm, author = {Franz Hofbauer and Peter Raith}, title = {Density of periodic orbit measures for transformations on the interval with two monotonic pieces}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {221-234}, zbl = {0915.58026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p221bwm} }
Hofbauer, Franz; Raith, Peter. Density of periodic orbit measures for transformations on the interval with two monotonic pieces. Fundamenta Mathematicae, Tome 158 (1998) pp. 221-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p221bwm/
[00000] [1] A. Blokh, The `spectral' decomposition for one-dimensional maps, in: Dynam. Report. 4, C. K. R. T. Jones, V. Kirchgraber and H.-O. Walther (eds.), Springer, Berlin, 1995, 1-59. | Zbl 0828.58009
[00001] [2] R. Bowen, Periodic points and measures for axiom-A-diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397. | Zbl 0212.29103
[00002] [3] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976. | Zbl 0328.28008
[00003] [4] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. | Zbl 0578.60069
[00004] [5] F. Hofbauer, Generic properties of invariant measures for simple piecewise monotonic transformations, Israel J. Math. 59 (1987), 64-80. | Zbl 0637.28013
[00005] [6] F. Hofbauer, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc. 47 (1993), 142-156. | Zbl 0725.54031
[00006] [7] F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1119-1142. | Zbl 0842.58019
[00007] [8] F. Hofbauer and M. Urba/nski, Fractal properties of invariant subsets for piecewise monotonic maps of the interval, Trans. Amer. Math. Soc. 343 (1994), 659-673. | Zbl 0827.58036
[00008] [9] P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97-133. | Zbl 0768.28010
[00009] [10] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.