Conformal measures for rational functions revisited
Denker, Manfred ; Mauldin, R. ; Nitecki, Z. ; Urbański, Mariusz
Fundamenta Mathematicae, Tome 158 (1998), p. 161-173 / Harvested from The Polish Digital Mathematics Library

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212283
@article{bwmeta1.element.bwnjournal-article-fmv157i2p161bwm,
     author = {Manfred Denker and R. Mauldin and Z. Nitecki and Mariusz Urba\'nski},
     title = {Conformal measures for rational functions revisited},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {161-173},
     zbl = {0915.58041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p161bwm}
}
Denker, Manfred; Mauldin, R.; Nitecki, Z.; Urbański, Mariusz. Conformal measures for rational functions revisited. Fundamenta Mathematicae, Tome 158 (1998) pp. 161-173. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p161bwm/

[00000] [ADU] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. | Zbl 0789.28010

[00001] [BMO] A. M. Blokh, J. C. Mayer and L. G. Oversteegen, Limit sets and conformal measures, preprint, 1998.

[00002] [DNU] M. Denker, Z. Nitecki and M. Urbański, Conformal measures and S-unimodal maps, in: Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Sci., 1995, 169-212. | Zbl 0856.58023

[00003] [DU] M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134. | Zbl 0718.58035

[00004] [DU1] M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, ibid. 4 (1991), 365-384. | Zbl 0722.58028

[00005] [DU2] M. Denker and M. Urbański, On absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. | Zbl 0745.28008

[00006] [DU3] M. Denker and M. Urbański, Geometric measures for parabolic rational maps, Ergodic Theory Dynam. Systems 12 (1992), 53-66. | Zbl 0737.58030

[00007] [LM] M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), 17-94. | Zbl 0910.58032

[00008] [Ma] R. Ma né, On the Bernoulli property of rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88.

[00009] [MU] R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. 73 (1996), 105-154. | Zbl 0852.28005

[00010] [MM] C. T. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, preprint, Stony Brook, 1997.

[00011] [Pr1] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. | Zbl 0787.58037

[00012] [Pr2] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 350 (1998), 717-742. | Zbl 0892.58063

[00013] [Pr3] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. 362, Longman, 1996, 167-181. | Zbl 0868.58063

[00014] [Pr4] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, preprint, 1997

[00015] [PU] F. Przytycki and M. Urbański, Fractal sets in the plane - ergodic theory methods, to appear.

[00016] [Sh] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, preprint, 1991.

[00017] [U1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. | Zbl 0807.58025

[00018] [U2] M. Urbański, On some aspects of fractal dimensions in higher dimensional dynamics, preprint, 1995.

[00019] [U3] M. Urbański, Geometry and ergodic theory of conformal nonrecurrent dynamics, Ergodic Theory Dynam. Systems 17 (1997), 1449-1476. | Zbl 0894.58036