For a class of quadratic polynomial endomorphisms close to the standard torus map , we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).
@article{bwmeta1.element.bwnjournal-article-fmv157i2p139bwm, author = {Manfred Denker and Stefan Heinemann}, title = {Jordan tori and polynomial endomorphisms in $$\mathbb{C}$^2$ }, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {139-159}, zbl = {0919.58040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p139bwm} }
Denker, Manfred; Heinemann, Stefan. Jordan tori and polynomial endomorphisms in $ℂ^2$ . Fundamenta Mathematicae, Tome 158 (1998) pp. 139-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p139bwm/
[00000] [1] J. Aaronson, M. Denker, and M. Urbański, Ergodic theory of Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. | Zbl 0789.28010
[00001] [2] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, 1991.
[00002] [3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of : currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69-99. | Zbl 0721.58037
[00003] [4] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. | Zbl 0127.03401
[00004] [5] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 201-231. | Zbl 0813.58030
[00005] [6] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher 184, Springer, 1977.
[00006] [7] B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Variables, Transl. Math. Monographs 14, Amer. Math. Soc., 1991.
[00007] [8] I. R. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wiss., 1964.
[00008] [9] H. Grauert und K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Hochschultext, Springer, 1974. | Zbl 0285.32001
[00009] [10] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984.
[00010] [11] M. Gromov, On the entropy of holomorphic mappings, preprint, Inst. Hautes Etudes Sci.
[00011] [12] P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982. | Zbl 0476.34002
[00012] [13] S. M. Heinemann, Iteration holomorpher Abbildungen in , Diplomarbeit Universität Göttingen, 1993.
[00013] [14] S. M. Heinemann, Dynamische Aspekte holomorpher Abbildungen in , Dissertation, Universität Göttingen, 1994.
[00014] [15] S. M. Heinemann, Julia sets for endomorphisms of , Ergodic Theory Dynam. Systems 16 (1996), 1275-1296. | Zbl 0874.32008
[00015] [16] K. Knopp, Elemente der Funktionentheorie, Sammlung Göschen 2124, de Gruyter, 1978. | Zbl 0387.30001
[00016] [17] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. | Zbl 0176.00901
[00017] [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. | Zbl 0628.32001
[00018] [19] R. Remmert, Funktionentheorie I, Grundwissen Math. 5, Springer, 1984.
[00019] [20] G. Scheja und U. Storch, Lehrbuch der Algebra 2, Mathematische Leitfäden, Teubner, 1988.
[00020] [21] F. Schweiger, Numbertheoretical endomorphisms with σ-finite invariant measure, Israel J. Math. 21 (1975), 308-318. | Zbl 0314.10037
[00021] [22] I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1974. | Zbl 0284.14001