We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if is a periodic orbit of a continuous map f then there is a union set of some periodic orbits of f such that for any i.
@article{bwmeta1.element.bwnjournal-article-fmv157i2p121bwm, author = {Llu\'\i s Alsed\`a and V\'\i ctor Jim\'enez L\'opez and L'ubom\'\i r Snoha}, title = {All solenoids of piecewise smooth maps are period doubling}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {121-138}, zbl = {0915.58064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p121bwm} }
Alsedà, Lluís; Jiménez López, Víctor; Snoha, L’ubomír. All solenoids of piecewise smooth maps are period doubling. Fundamenta Mathematicae, Tome 158 (1998) pp. 121-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i2p121bwm/
[00000] [1] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. in Nonlinear Dynam. 5, World Sci., Singapore, 1993. | Zbl 0843.58034
[00001] [2] A. M. Blokh and M. Yu. Lyubich, Measure and dimension of solenoidal attractors of one dimensional dynamical systems, Comm. Math. Phys. 127 (1990), 573-583. | Zbl 0721.58033
[00002] [3] J. Bobok and M. Kuchta, Register shifts versus transitive F-cycles for piecewise monotone maps, Real Anal. Exchange 21 (1995/96), 134-146. | Zbl 0849.26002
[00003] [4] R. Galeeva and S. van Strien, Which families of l-modal maps are full?, Trans. Amer. Math. Soc. 348 (1996), 3215-3221. | Zbl 0862.58015
[00004] [5] V. Jiménez López and L’. Snoha, There are no piecewise linear maps of type , ibid. 349 (1997), 1377-1387. | Zbl 0947.37025
[00005] [6] S. F. Kolyada, Interval maps with zero Schwarzian, in: Functional-Differential Equations and Their Applications, Inst. Math. Ukrain. Acad. Sci., Kiev, 1985, 47-57 (in Russian).
[00006] [7] L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
[00007] [8] M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318. | Zbl 0761.58007
[00008] [9] M. Martens and C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870. | Zbl 0864.58035
[00009] [10] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993. | Zbl 0791.58003
[00010] [11] M. Misiurewicz, Attracting Cantor set of positive measure for a map of an interval, Ergodic Theory Dynam. Systems 2 (1982), 405-415. | Zbl 0522.58032
[00011] [12] C. Preston, Iterates of Piecewise Monotone Mappings on an Interval, Lecture Notes in Math. 1347, Springer, Berlin, 1988. | Zbl 0684.58002