Types on stable Banach spaces
Iovino, José
Fundamenta Mathematicae, Tome 158 (1998), p. 85-95 / Harvested from The Polish Digital Mathematics Library

 We prove a geometric characterization of Banach space stability. We show that a Banach space X is stable if and only if the following condition holds. Whenever X^ is an ultrapower of X and B is a ball in X^, the intersection B ∩ X can be uniformly approximated by finite unions and intersections of balls in X; furthermore, the radius of these balls can be taken arbitrarily close to the radius of B, and the norm of their centers arbitrarily close to the norm of the center of B.  The preceding condition can be rephrased without any reference to ultrapowers, in the language of types, as follows. Whenever τ is a type of X, the set τ-1[0,r] can be uniformly approximated by finite unions and intersections of balls in X; furthermore, the radius of these balls can be taken arbitrarily close to r, and the norm of their centers arbitrarily close to τ(0).  We also provide a geometric characterization of the real-valued functions which satisfy the above condition.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212280
@article{bwmeta1.element.bwnjournal-article-fmv157i1p85bwm,
     author = {Jos\'e Iovino},
     title = {Types on stable Banach spaces},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {85-95},
     zbl = {0919.46010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p85bwm}
}
Iovino, José. Types on stable Banach spaces. Fundamenta Mathematicae, Tome 158 (1998) pp. 85-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p85bwm/

[00000] [1] D. Aldous, Subspaces of L1 via random measures, Trans. Amer. Math. Soc. 267 (1981), 445-463.

[00001] [2] S. Guerre-Delabrière, Classical Sequences in Banach Spaces, Marcel Dekker, New York, 1992. | Zbl 0756.46007

[00002] [3] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104. | Zbl 0412.46017

[00003] [4] J. Iovino, Stable theories in functional analysis, PhD thesis, Univ. of Illinois at Urbana-Champaign, 1994.

[00004] [5] J.-L. Krivine et B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295. | Zbl 0504.46013

[00005] [6] E. Odell, On the types in Tsirelson's space, in: Longhorn Notes, Texas Functional Analysis Seminar, 1982-1983.

[00006] [7] A. Pillay, Geometric Stability Theory, Clarendon Press, Oxford, 1996. | Zbl 0871.03023

[00007] [8] Y. Raynaud, Stabilité et séparabilité de l'espace des types d'un espace de Banach: Quelques exemples, in: Séminarie de Géométrie des Espaces de Banach, Paris VII, Tome II, 1983.