We prove a factorization theorem for transfinite kernel dimension in the class of metrizable spaces. Our result in conjunction with Pasynkov's technique implies the existence of a universal element in the class of metrizable spaces of given weight and transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.
@article{bwmeta1.element.bwnjournal-article-fmv157i1p79bwm, author = {M. Charalambous}, title = {A factorization theorem for the transfinite kernel dimension of metrizable spaces}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {79-84}, zbl = {0905.54022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p79bwm} }
Charalambous, M. A factorization theorem for the transfinite kernel dimension of metrizable spaces. Fundamenta Mathematicae, Tome 158 (1998) pp. 79-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p79bwm/
[00000] [1] M. G. Charalambous, Further theory and applications of covering dimension of uniform spaces, Czechoslovak Math. J. 41 (1991), 378-394.
[00001] [2] R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
[00002] [3] D. W. Henderson, D-dimension, I. A new transfinite dimension, Pacific J. Math. 26 (1968), 91-107. | Zbl 0162.26904
[00003] [4] L. Luxemburg, On universal infinite-dimensional spaces, Fund. Math. 122 (1984), 129-144. | Zbl 0571.54029
[00004] [5] W. Olszewski, On D-dimension of metrizable spaces, ibid. 140 (1991), 35-48. | Zbl 0807.54007
[00005] [6] B. A. Pasynkov, On universal bicompacta of a given weight and dimension, Soviet Math. Dokl. 5 (1964), 245-246. | Zbl 0197.48601
[00006] [7] B. A. Pasynkov, A factorization theorem for non-closed sets, ibid. 13 (1972), 292-295. | Zbl 0247.54037