Dense pairs of o-minimal structures
van den Dries, Lou
Fundamenta Mathematicae, Tome 158 (1998), p. 61-78 / Harvested from The Polish Digital Mathematics Library

The structure of definable sets and maps in dense elementary pairs of o-minimal expansions of ordered abelian groups is described. It turns out that a certain notion of "small definable set" plays a special role in this description.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212278
@article{bwmeta1.element.bwnjournal-article-fmv157i1p61bwm,
     author = {Lou van den Dries},
     title = {Dense pairs of o-minimal structures},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {61-78},
     zbl = {0906.03036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p61bwm}
}
van den Dries, Lou. Dense pairs of o-minimal structures. Fundamenta Mathematicae, Tome 158 (1998) pp. 61-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p61bwm/

[00000] [1] L. van den Dries and A. Lewenberg, T-convexity and tame extensions, J. Symbolic Logic 60 (1995), 74-102.

[00001] [2] E. Hrushovski, Strongly minimal expansions of algebraically closed fields, Israel J. Math. 79 (1992), 129-151. | Zbl 0773.12005

[00002] [3] A. Macintyre, Dense embeddings I: a theorem of Robinson in a general setting, in: Model Theory and Algebra. A Memorial Tribute to Abraham Robinson; D. H. Saracino and V. B. Weispfenning (eds.), Lecture Notes in Math. 498, Springer, Berlin, 1975, 200-219.

[00003] [4] H. D. MacPherson, D. Marker and C. Steinhorn, Weakly o-minimal theories and real closed fields, preprint.

[00004] [5] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, preprint. | Zbl 0946.03045

[00005] [6] Y. Peterzil and S. Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math. Soc., to appear.

[00006] [7] A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592. | Zbl 0662.03023

[00007] [8] A. Robinson, Solution of a problem of Tarski, Fund. Math. 47 (1959), 79-204. | Zbl 0093.01305