Hausdorff measures and two point set extensions
Dijkstra, Jan ; Kunen, Kenneth ; van Mill, Jan
Fundamenta Mathematicae, Tome 158 (1998), p. 43-60 / Harvested from The Polish Digital Mathematics Library

We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212277
@article{bwmeta1.element.bwnjournal-article-fmv157i1p43bwm,
     author = {Jan Dijkstra and Kenneth Kunen and Jan van Mill},
     title = {Hausdorff measures and two point set extensions},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {43-60},
     zbl = {0910.28005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p43bwm}
}
Dijkstra, Jan; Kunen, Kenneth; van Mill, Jan. Hausdorff measures and two point set extensions. Fundamenta Mathematicae, Tome 158 (1998) pp. 43-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p43bwm/

[00000] [1] J. J. Dijkstra, Generic partial two-point sets are extendable, Canad. Math. Bull., to appear. | Zbl 1002.54004

[00001] [2] J. J. Dijkstra and J. van Mill, Two point set extensions - a counterexample, Proc. Amer. Math. Soc. 125 (1997), 2501-2502. | Zbl 0880.54022

[00002] [3] J. Kulesza, A two-point set must be zero-dimensional, ibid. 116 (1992), 551-553. | Zbl 0765.54006

[00003] [4] N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wiss. 180, Springer, Berlin, 1972. | Zbl 0253.31001

[00004] [5] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, 1993.

[00005] [6] R. D. Mauldin, Problems in topology arising from analysis, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 617-629.

[00006] [7] R. D. Mauldin, On sets which meet each line in exactly two points, Bull. London Math. Soc., to appear. | Zbl 0931.28001

[00007] [8] S. Mazurkiewicz, O pewnej mnogości płaskiej, która ma każdą prostą dwa i tylko dwa punkty wspólne, C. R. Varsovie 7 (1914), 382-384 (in Polish); French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications, PWN, Warszawa, 1969, 46-47.

[00008] [9] J. van Mill and G. M. Reed, Open problems in topology, Topology Appl. 62 (1995), 93-99. | Zbl 0811.54002

[00009] [10] M. E. Rudin, Martin's Axiom, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 491-501.

[00010] [11] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. | Zbl 0925.00005

[00011] [12] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. | Zbl 0087.28401