The regular open algebra of βRR is not equal to the completion of P(ω)/fin
Dow, Alan
Fundamenta Mathematicae, Tome 158 (1998), p. 33-41 / Harvested from The Polish Digital Mathematics Library

Two compact spaces are co-absoluteif their respective regular open algebras are isomorphic (i.e. homeomorphic Gleason covers). We prove that it is consistent that βω and βℝ are not co-absolute.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212276
@article{bwmeta1.element.bwnjournal-article-fmv157i1p33bwm,
     author = {Alan Dow},
     title = {The regular open algebra of $\beta$RR is not equal to the completion of P($\omega$)/fin},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {33-41},
     zbl = {0996.54008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p33bwm}
}
Dow, Alan. The regular open algebra of βRR is not equal to the completion of P(ω)/fin. Fundamenta Mathematicae, Tome 158 (1998) pp. 33-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p33bwm/

[00000] [1] B. Balcar, J. Pelant, and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24. | Zbl 0568.54004

[00001] [2] J. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), Cambridge Univ. Press, 1983, 1-59.

[00002] [3] P. L. Dordal, A model in which the base-matrix tree cannot have cofinal branches, J. Symbolic Logic 52 (1987), 651-664. | Zbl 0637.03049

[00003] [4] A. Dow, Tree π-bases for βN-N in various models, Topology Appl. 33 (1989), 3-19. | Zbl 0697.54003

[00004] [5] A. Dow, Set theory in topology, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), Elsevier, 1992, 169-197. | Zbl 0796.54001

[00005] [6] A. Dow and J. Zhou, On subspaces of pseudoradial spaces, Proc. Amer. Math. Soc., to appear. | Zbl 0909.54002

[00006] [7] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, 305-360. | Zbl 0834.03016

[00007] [8] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.

[00008] [9] S. Shelah, On cardinal invariants of the continuum, in: Axiomatic Set Theory, Contemp. Math. 31, Amer. Math. Soc., 1984, 183-207.

[00009] [10] O. Spinas and S. Shelah, The distributivity numbers of P(ω)/fin and its squares, Number 494 of Shelah Archives.

[00010] [11] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028

[00011] [12] E. K. van Douwen, Transfer of information about βN-N via open remainder maps, Illinois J. Math. 34 (1990), 769-792. | Zbl 0709.54020

[00012] [13] J. van Mill and S. W. Williams, A compact F-space not co-absolute with βℕ -ℕ, Topology Appl. 15 (1983), 59-64.