We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group that are invariant for changes on null-sets (e.g. measurable functions, , , essentially continuous functions, functions with absolute convergent Fourier series (ACF*), essentially Lipschitz functions) and classes of continuous functions on (e.g. continuous functions, continuous functions with absolute convergent Fourier series, Lipschitz functions). The classes ℌ(ℱ,G) are often related to some classes of thin sets in harmonic analysis (e.g. is the class of N-sets). Some results concerning the difference property and the weak difference property of these classes of functions are also obtained.
@article{bwmeta1.element.bwnjournal-article-fmv157i1p15bwm, author = {Tam\'as Keleti}, title = {Difference functions of periodic measurable functions}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {15-32}, zbl = {0910.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p15bwm} }
Keleti, Tamás. Difference functions of periodic measurable functions. Fundamenta Mathematicae, Tome 158 (1998) pp. 15-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv157i1p15bwm/
[00000] [1] M. Balcerzak, Z. Buczolich and M. Laczkovich, Lipschitz differences and Lipschitz functions, Colloq. Math. 72 (1997), 319-324. | Zbl 0877.26004
[00001] [2] N. K. Bary, Trigonometric Series, Fizmatgiz, Moscow, 1961 (in Russian); English transl.: A Treatise on Trigonometric Series, Macmillan, New York, 1964.
[00002] [3] N. G. de Bruijn, Functions whose differences belong to a given class, Nieuw Arch. Wisk. 23 (1951), 194-218. | Zbl 0042.28805
[00003] [4] N. G. de Bruijn, A difference property for Riemann integrable functions and for some similar classes of functions, Indag. Math. 14 (1952), 145-151. | Zbl 0047.06202
[00004] [5] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-1995), 454-509. | Zbl 0835.42001
[00005] [6] B. Host, J-F. Méla and F. Parreau, Non singular transformations and spectral analysis of measures, Bull. Soc. Math. France 119 (1991), 33-90. | Zbl 0748.43001
[00006] [7] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. | Zbl 0793.42003
[00007] [8] T. Keleti, On the differences and sums of periodic measurable functions, Acta Math. Hungar. 75 (1997), 279-286. | Zbl 0929.26002
[00008] [9] T. Keleti, Difference functions of periodic measurable functions, PhD thesis, Eötvös Loránd University, Budapest, 1996 (http://www.cs.elte.hu/phd_th/). | Zbl 0910.28003
[00009] [10] T. Keleti, Periodic functions with difference functions, Colloq. Math. 76 (1998), 99-103. | Zbl 0896.26005
[00010] [11] T. Keleti, Periodic functions with difference functions, Real Anal. Exchange, to appear. | Zbl 0943.28002
[00011] [12] M. Laczkovich, Functions with measurable differences, Acta Math. Acad. Sci. Hungar. 35 (1980), 217-235. | Zbl 0468.28006
[00012] [13] M. Laczkovich, On the difference property of the class of pointwise discontinuous functions and some related classes, Canad. J. Math. 36 (1984), 756-768. | Zbl 0564.39001
[00013] [14] M. Laczkovich and Sz. Révész, Periodic decompositions of continuous functions, Acta Math. Hungar. 54 (1989), 329-341.
[00014] [15] M. Laczkovich and I. Z. Ruzsa, Measure of sumsets and ejective sets I, Real Anal. Exchange 22 (1996-97), 153-166.
[00015] [16] W. Sierpiński, Sur les translations des ensembles linéaires, Fund. Math. 19 (1932), 22-28.
[00016] [17] A. Zygmund, Trigonometric Series, Vols. I-II, Cambridge Univ. Press, 1959.