Let . Consider the class of all Borel with null vertical sections , x ∈ X. We show that if for all such F and all null Z ⊆ X, is null, then for all such F, . The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P].
@article{bwmeta1.element.bwnjournal-article-fmv156i3p279bwm, author = {Janusz Pawlikowski}, title = {Strongly meager sets and subsets of the plane}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {279-287}, zbl = {0906.04001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p279bwm} }
Pawlikowski, Janusz. Strongly meager sets and subsets of the plane. Fundamenta Mathematicae, Tome 158 (1998) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p279bwm/
[00000] [B] T. Bartoszyński, On covering the real line with null sets, Pacific J. Math. 131 (1988), 1-12. | Zbl 0643.03034
[00001] [BJ] T. Bartoszyński and H. Judah, Borel images of sets of reals, Real Anal. Exchange 20 (1995), 1-23.
[00002] [BJ1] T. Bartoszyński and H. Judah, Set Theory: on the Structure of the Real Line, A. K. Peters, Wellesley, Mass., 1995.
[00003] [C] T. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), 577-586. | Zbl 0787.03037
[00004] [FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33. | Zbl 0665.54026
[00005] [K] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
[00006] [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 203-233.
[00007] [M1] A. W. Miller, Additivity of measure implies dominating reals, Proc. Amer. Math. Soc. 91 (1984), 111-117. | Zbl 0586.03042
[00008] [P] J. Pawlikowski, Every Sierpiński set is strongly meager, Arch. Math. Logic 35 (1996), 281-285. | Zbl 0871.04003
[00009] [PR] J. Pawlikowski and I. Recław, Parametrized Cichoń's diagram and small sets, Fund. Math. 147 (1995), 135-155. | Zbl 0847.04004