Let X be an atom (= hereditarily indecomposable continuum). Define a metric ϱ on X by letting where is the (unique) minimal subcontinuum of X which contains x and y and W is a Whitney map on the set of subcontinua of X with W(X) = 1. We prove that ϱ is an ultrametric and the topology of (X,ϱ) is stronger than the original topology of X. The ϱ-closed balls C(x,r) = y ∈ X:ϱ ( x,y) ≤ r coincide with the subcontinua of X. (C(x,r) is the unique subcontinuum of X which contains x and has Whitney value r.) It is proved that for any two (nontrivial) atoms and any Whitney maps on them, the corresponding ultrametric spaces are isometric. This implies in particular that the combinatorial structure of subcontinua is identical in all atoms. The set M(X) of all monotone upper semicontinuous decompositions of X is a lattice when ordered by refinement. It is proved that for two atoms X and Y, M(X) is lattice isomorphic to M(Y) if and only if X is homeomorphic to Y.
@article{bwmeta1.element.bwnjournal-article-fmv156i3p261bwm, author = {R. Ball and J. Hagler and Yaki Sternfeld}, title = {The structure of atoms (hereditarily indecomposable continua)}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {261-278}, zbl = {0906.54026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p261bwm} }
Ball, R.; Hagler, J.; Sternfeld, Yaki. The structure of atoms (hereditarily indecomposable continua). Fundamenta Mathematicae, Tome 158 (1998) pp. 261-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p261bwm/
[00000] [Ar-Pa] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. | Zbl 0074.17802
[00001] [Bi] R. H. Bing, Higher dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273. | Zbl 0043.16901
[00002] [Ho-Yo] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, 1961.
[00003] [Kn] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286. | Zbl 48.0212.01
[00004] [Kra] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (1996), 147-156. | Zbl 0867.54020
[00005] [Ku] K. Kuratowski, Topology, Volume II, Academic Press and PWN, 1968.
[00006] [Lev] M. Levin, Certain finite dimensional maps and their application to hyperspaces, Israel J. Math., to appear.
[00007] [Lev-St1] M. Levin and Y. Sternfeld, Mappings which are stable with respect to the property dimf(X) ≥ k, Topology Appl. 52 (1993), 241-265. | Zbl 0819.54023
[00008] [Lev-St2] M. Levin and Y. Sternfeld, Monotone basic embeddings of hereditarily indecomposable continua, ibid. 68 (1996), 241-249. | Zbl 0845.54021
[00009] [Lev-St3] M. Levin and Y. Sternfeld, Atomic maps and the Chogoshvili-Pontrjagin claim, Trans. Amer. Math. Soc., to appear. | Zbl 0902.54027
[00010] [Lev-St4] M. Levin and Y. Sternfeld, The space of subcontinua of a two-dimensional continuum is infinite dimensional, Proc. Amer. Math. Soc. 125 (1997), 2771-2775. | Zbl 0891.54004
[00011] [Lew] W. Lewis, The Pseudo-Arc, Marcel-Dekker, in preparation.
[00012] [Li] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). | Zbl 0141.12001
[00013] [Li-Tz] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338, Springer, 1973. | Zbl 0259.46011
[00014] [Ma] S. Mazurkiewicz, Sur les continus indécomposables, Fund. Math. 10 (1927), 305-310.
[00015] [Na] S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, 1978.
[00016] [Ni] J. Nikiel, Topologies on pseudo-trees and applications, Mem. Amer. Math. Soc. 416 (1989). | Zbl 0693.54017
[00017] [Po1] R. Pol, A two-dimensional compactum in the product of two one-dimensional compacta which does not contain any rectangle, Topology Proc. 16 (1991), 133-315.
[00018] [Po2] R. Pol, On light mappings without perfect fibers on compacta, Tsukuba Math. J. 20 (1996), 11-19. | Zbl 0913.54015
[00019] [Sch] W. H. Schikhof, Ultrametric Calculus. An introduction to p-adic analysis, Cambridge Univ. Press, 1984. | Zbl 0553.26006
[00020] [St] Y. Sternfeld, Stability and dimension - a counterexample to a conjecture of Chogoshvili, Trans. Amer. Math. Soc. 340 (1993), 243-251. | Zbl 0807.54030
[00021] [VR] A. C. M. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, 1978.