The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
@article{bwmeta1.element.bwnjournal-article-fmv156i3p211bwm, author = {R\"udiger G\"obel and Simone Pabst}, title = {Endomorphism algebras over large domains}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {211-240}, zbl = {0938.16019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p211bwm} }
Göbel, Rüdiger; Pabst, Simone. Endomorphism algebras over large domains. Fundamenta Mathematicae, Tome 158 (1998) pp. 211-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p211bwm/
[00000] [1] C. Böttinger and R.Göbel, Modules with two distinguished submodules, in: Proc. 1991 Curaçao Conf. Abelian Groups, Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, New York, 1993, 97-104. | Zbl 0808.16030
[00001] [2] C. C. Chang and H. J. Keisler, Model Theory, Stud. Logic Found. Math. 73, North-Holland, 1990.
[00002] [3] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras - A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447-479. | Zbl 0562.20030
[00003] [4] M. Dugas and R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), 451-470. | Zbl 0501.16031
[00004] [5] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland, 1990. | Zbl 0718.20027
[00005] [6] L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure and Appl. Math. 97, Marcel Dekker, New York, 1985. | Zbl 0578.13004
[00006] [7] R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215-226. | Zbl 0691.13004
[00007] [8] R. Göbel and S. Shelah, Modules over arbitrary domains II, Fund. Math. 126 (1986), 217-243. | Zbl 0615.16021
[00008] [9] S. Pabst, Kaplansky's Testprobleme in der Modultheorie über kommutativen Ringen, Dissertation, Universität/GHS Essen, 1994.
[00009] [10] M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, 1988.
[00010] [11] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719. | Zbl 0172.04801
[00011] [12] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213. | Zbl 0593.16019