On the insertion of Darboux functions
Maliszewski, Aleksander
Fundamenta Mathematicae, Tome 158 (1998), p. 197-209 / Harvested from The Polish Digital Mathematics Library

The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212269
@article{bwmeta1.element.bwnjournal-article-fmv156i3p197bwm,
     author = {Aleksander Maliszewski},
     title = {On the insertion of Darboux functions},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {197-209},
     zbl = {0909.26002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p197bwm}
}
Maliszewski, Aleksander. On the insertion of Darboux functions. Fundamenta Mathematicae, Tome 158 (1998) pp. 197-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i3p197bwm/

[00000] [1] F. Bagemihl and G. Piranian, Boundary functions defined in a disk, Michigan Math. J. 8 (1961), 201-207. | Zbl 0134.29302

[00001] [2] S. Banach, Sur une classe des fonctions continues, Fund. Math. 8 (1926), 166-172.

[00002] [3] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86 (1974), 1-7. | Zbl 0297.26004

[00003] [4] A. M. Bruckner, J. G. Ceder, and T. L. Pearson, On the insertion of Darboux, Baire-one functions, ibid. 80 (1973), 157-167. | Zbl 0271.26003

[00004] [5] A. M. Bruckner, On Darboux functions, Rev. Roumaine Math. Pures Appl. 19 (1974), 977-988. | Zbl 0289.26005

[00005] [6] A. M. Bruckner, J. G. Ceder, and M. L. Weiss, Uniform limits of Darboux functions, Colloq. Math. 15 (1966), 65-77. | Zbl 0138.28004

[00006] [7] J. G. Ceder and T. L. Pearson, Insertion of open functions, Duke Math. J. 35 (1968), 277-288. | Zbl 0174.09302

[00007] [8] J. G. Ceder and M. L. Weiss, Some in-between theorems for Darboux functions, Michigan Math. J. 13 (1966), 225-233. | Zbl 0145.06402

[00008] [9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197. | Zbl 58.0246.01

[00009] [10] A. Maliszewski, Sums of bounded Darboux functions, Real Anal. Exchange 20 (1994-95), 673-680. | Zbl 0830.26002

[00010] [11] A. Maliszewski, On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87-93. | Zbl 0885.26002

[00011] [12] A. Maliszewski, Darboux property and quasi-continuity. A uniform approach, WSP, Słupsk, 1996.

[00012] [13] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991-92), 462-520.

[00013] [14] T. Natkaniec, Almost continuity, WSP, Bydgoszcz, 1992.

[00014] [15] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47 (1959), 249-263. | Zbl 0114.39102

[00015] [16] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. | Zbl 0038.20602