Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent that every bounded function which is weakly measurable with respect to some Radon measure is Pettis integrable.
@article{bwmeta1.element.bwnjournal-article-fmv156i2p183bwm, author = {Grzegorz Plebanek}, title = {On Pettis integral and Radon measures}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {183-195}, zbl = {0944.46041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p183bwm} }
Plebanek, Grzegorz. On Pettis integral and Radon measures. Fundamenta Mathematicae, Tome 158 (1998) pp. 183-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p183bwm/
[00000] [1] K. T. Andrews, Universal Pettis integrability, Canad. J. Math. 37 (1985), 141-159. | Zbl 0618.28008
[00001] [2] G. A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28 (1979), 559-579. | Zbl 0418.46034
[00002] [3] R. Frankiewicz and G. Plebanek, On nonaccessible filters in measure algebras and functionals on , Studia Math. 108 (1994), 191-200. | Zbl 0849.46018
[00003] [4] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). | Zbl 0703.28003
[00004] [5] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holand, 1989, Vol. III, Chap. 22.
[00005] [6] D. H. Fremlin, Real-valued measurable cardinals, in: Israel Math. Conf. Proc. 6, 1993, 961-1044.
[00006] [7] K. Kunen, Some points in βN, Math. Proc. Cambridge Philos. Soc. 80 (1975), 385-398. | Zbl 0345.02047
[00007] [8] K. Kunen, Set Theory, Stud. Logic 102, North-Holland, 1980.
[00008] [9] K. Musiał, Topics in the theory of Pettis integration, Rend. Inst. Mat. Univ. Trieste 23 (1991), 177-262. | Zbl 0798.46042
[00009] [10] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, 1984, 1045-1142.
[00010] [11] G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64 (1993), 71-78. | Zbl 0823.28005
[00011] [12] L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), 509-531. | Zbl 0576.46034
[00012] [13] L. H. Riddle, E. Saab and J. J. Uhl, Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527-541. | Zbl 0547.46009
[00013] [14] G. F. Stefansson, Universal Pettis integrability, Proc. Amer. Math. Soc. 125 (1993), 1431-1435.
[00014] [15] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984).
[00015] [16] G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. (1996) (numero supl.), 221-245. | Zbl 0873.28005