On nonstructure of elementary submodels of a stable homogeneous structure
Hyttinen, Tapani
Fundamenta Mathematicae, Tome 158 (1998), p. 167-182 / Harvested from The Polish Digital Mathematics Library

We assume that M is a stable homogeneous model of large cardinality. We prove a nonstructure theorem for (slightly saturated) elementary submodels of M, assuming M has dop. We do not assume that th(M) is stable.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212266
@article{bwmeta1.element.bwnjournal-article-fmv156i2p167bwm,
     author = {Tapani Hyttinen},
     title = {On nonstructure of elementary submodels of a stable homogeneous structure},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {167-182},
     zbl = {0918.03021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p167bwm}
}
Hyttinen, Tapani. On nonstructure of elementary submodels of a stable homogeneous structure. Fundamenta Mathematicae, Tome 158 (1998) pp. 167-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p167bwm/

[00000] [Hy1] T. Hyttinen, Splitting in stable homogeneous models of unstable theories, manuscript.

[00001] [Hy2] T. Hyttinen, On elementary submodels of a stable homogeneous structure, manuscript.

[00002] [HS] T. Hyttinen and S. Shelah, Strong splitting in stable homogeneous models, submitted. | Zbl 0961.03028

[00003] [HT] T. Hyttinen and H. Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories, Ann. Pure Appl. Logic 52 (1990), 203-248. | Zbl 0735.03016

[00004] [NS] M. Nadel and J. Stavi, Lλ-equivalence, isomorphism and potential isomorphism, Trans. Amer. Math. Soc. 236 (1978), 51-74. | Zbl 0381.03024

[00005] [Sh1] S. Shelah, Finite diagrams stable in power, Ann. Math. Logic 2 (1970), 69-118. | Zbl 0204.31104

[00006] [Sh2] S. Shelah, Classification Theory, 2nd rev. ed., Stud. Logic Found. Math. 92, North-Holland, Amsterdam, 1990.

[00007] [Sh3] S. Shelah, Non-structure theory, to appear.