We assume that M is a stable homogeneous model of large cardinality. We prove a nonstructure theorem for (slightly saturated) elementary submodels of M, assuming M has dop. We do not assume that th(M) is stable.
@article{bwmeta1.element.bwnjournal-article-fmv156i2p167bwm, author = {Tapani Hyttinen}, title = {On nonstructure of elementary submodels of a stable homogeneous structure}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {167-182}, zbl = {0918.03021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p167bwm} }
Hyttinen, Tapani. On nonstructure of elementary submodels of a stable homogeneous structure. Fundamenta Mathematicae, Tome 158 (1998) pp. 167-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i2p167bwm/
[00000] [Hy1] T. Hyttinen, Splitting in stable homogeneous models of unstable theories, manuscript.
[00001] [Hy2] T. Hyttinen, On elementary submodels of a stable homogeneous structure, manuscript.
[00002] [HS] T. Hyttinen and S. Shelah, Strong splitting in stable homogeneous models, submitted. | Zbl 0961.03028
[00003] [HT] T. Hyttinen and H. Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories, Ann. Pure Appl. Logic 52 (1990), 203-248. | Zbl 0735.03016
[00004] [NS] M. Nadel and J. Stavi, -equivalence, isomorphism and potential isomorphism, Trans. Amer. Math. Soc. 236 (1978), 51-74. | Zbl 0381.03024
[00005] [Sh1] S. Shelah, Finite diagrams stable in power, Ann. Math. Logic 2 (1970), 69-118. | Zbl 0204.31104
[00006] [Sh2] S. Shelah, Classification Theory, 2nd rev. ed., Stud. Logic Found. Math. 92, North-Holland, Amsterdam, 1990.
[00007] [Sh3] S. Shelah, Non-structure theory, to appear.