Gaps in analytic quotients
Todorčević, Stevo
Fundamenta Mathematicae, Tome 158 (1998), p. 85-97 / Harvested from The Polish Digital Mathematics Library

We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212263
@article{bwmeta1.element.bwnjournal-article-fmv156i1p85bwm,
     author = {Stevo Todor\v cevi\'c},
     title = {Gaps in analytic quotients},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {85-97},
     zbl = {0906.03048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p85bwm}
}
Todorčević, Stevo. Gaps in analytic quotients. Fundamenta Mathematicae, Tome 158 (1998) pp. 85-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p85bwm/

[00000] [1] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge Univ. Press, 1987. | Zbl 0629.03030

[00001] [2] I. Farah, Embedding partially ordered sets into ωω, Fund. Math. 151 (1996), 53-95. | Zbl 0861.03039

[00002] [3] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.

[00003] [4] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. | Zbl 40.0446.02

[00004] [5] F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255.

[00005] [6] S.-A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.

[00006] [7] W. Just, The space (ω*)n+1 is not always a continuous image of (ω*)n, Fund. Math. 132 (1989), 59-72. | Zbl 0697.54002

[00007] [8] W. Just, Nowhere dense P-subsets of ω*, Proc. Amer. Math. Soc. 106 (1989), 1145-1146. | Zbl 0674.54016

[00008] [9] W. Just, A modification of Shelah's oracle chain condition with applications, Trans. Amer. Math. Soc. 329 (1992), 325-341.

[00009] [10] W. Just, A weak version of AT from OCA, in: Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 281-291. | Zbl 0824.04003

[00010] [11] W. Just and A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), 411-429. | Zbl 0519.06011

[00011] [12] A. S. Kechris, Lectures on definable group actions and equivalence relations, in preparation.

[00012] [13] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. | Zbl 0865.03039

[00013] [14] K. Kunen, (κ,λ*) gaps under MA, note of August 1976.

[00014] [15] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (ed.), Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975, 1095-1097.

[00015] [16] K. Mazur, Fσ-ideals and ω1ω1*-gaps in the Boolean algebra CP(ω)/I, Fund. Math. 138 (1991), 103-111.

[00016] [17] M. Scheepers, Gaps in ωω, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 439-561.

[00017] [18] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.

[00018] [19] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. | Zbl 0862.04002

[00019] [20] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. | Zbl 0435.46023

[00020] [21] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989. | Zbl 0659.54001

[00021] [22] S. Todorčević, Analytic gaps, Fund. Math. 150 (1996), 55-66. | Zbl 0851.04002

[00022] [23] B. Veličković, Definable automorphisms of P(ω) /fin, Proc. Amer. Math. Soc. 96 (1986), 130-135. | Zbl 0614.03049

[00023] [24] B. Veličković, OCA and automorphisms of CP(ω)/fin, Topology Appl. 49 (1992), 1-12.