Dominating analytic families
Kamburelis, Anastasis
Fundamenta Mathematicae, Tome 158 (1998), p. 73-83 / Harvested from The Polish Digital Mathematics Library

Let A be an analytic family of sequences of sets of integers. We show that either A is dominated or it contains a continuum of almost disjoint sequences. From this we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an unbounded real.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212262
@article{bwmeta1.element.bwnjournal-article-fmv156i1p73bwm,
     author = {Anastasis Kamburelis},
     title = {Dominating analytic families},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {73-83},
     zbl = {0906.03047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p73bwm}
}
Kamburelis, Anastasis. Dominating analytic families. Fundamenta Mathematicae, Tome 158 (1998) pp. 73-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p73bwm/

[00000] [B] J. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, 1983, 1-59.

[00001] [E] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165. | Zbl 0292.02054

[00002] [F] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, Vol. 3, North-Holland, 1989, 877-980.

[00003] [GP] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198. | Zbl 0276.04003

[00004] [J] T. Jech, Set Theory, Academic Press, New York, 1978.

[00005] [K] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.

[00006] [RS] A. Rosłanowski and S. Shelah, Simple forcing notions and forcing axioms, preprint. | Zbl 0952.03061

[00007] [Sh] S. Shelah, How special are Cohen and Random forcings, Israel J. Math. 88 (1994), 159-174. | Zbl 0815.03031

[00008] [S] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64. | Zbl 0216.01304