We study the law of coexistence of different types of cycles for a continuous map of the interval. For this we introduce the notion of eccentricity of a pattern and characterize those patterns with a given eccentricity that are simplest from the point of view of the forcing relation. We call these patterns X-minimal. We obtain a generalization of Sharkovskiĭ's Theorem where the notion of period is replaced by the notion of eccentricity.
@article{bwmeta1.element.bwnjournal-article-fmv156i1p33bwm, author = {Jozef Bobok and Milan Kuchta}, title = {X-minimal patterns and a generalization of Sharkovski\u\i 's theorem}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {33-66}, zbl = {0909.26003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p33bwm} }
Bobok, Jozef; Kuchta, Milan. X-minimal patterns and a generalization of Sharkovskiĭ's theorem. Fundamenta Mathematicae, Tome 158 (1998) pp. 33-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p33bwm/
[00000] [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993. | Zbl 0843.58034
[00001] [ALS] L. Alsedà, J. Llibre and R. Serra, Mimimal periodic orbits for continuous maps of the interval, Trans. Amer. Math. Soc. 286 (1984), 595-627. | Zbl 0569.54040
[00002] [B] S. Baldwin, Generalizations of a theorem of Sharkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127. | Zbl 0632.06005
[00003] [B1] L. Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398. | Zbl 0386.54025
[00004] [B2] L. Block, Periodic orbits of continuous mappings of the circle, ibid. 260 (1980), 553-562.
[00005] [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
[00006] [Bl] A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1331-1337.
[00007] [BM] A. Blokh and M. Misiurewicz, Entropy of twist interval maps, MSRI Preprint No. 041-94, Math. Sci. Res. Inst., Berkeley, 1994.
[00008] [BK] J. Bobok and M. Kuchta, Invariant measures for maps of the interval that do not have points of some period, Ergodic Theory Dynam. Systems 14 (1994), 9-21. | Zbl 0805.58033
[00009] [C] W. A. Coppel, Šarkovskii-minimal orbits, Math. Proc. Cambridge Philos. Soc. 93 (1983), 397-408. | Zbl 0521.58044
[00010] [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1960.
[00011] [LMPY] T.-Y. Li, M. Misiurewicz, G. Pianigiani and J. A. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191-199. | Zbl 0495.58018
[00012] [S] A. N. Sharkovskiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Zh. 16 (1964), 61-71 (in Russian).
[00013] [St] P. Štefan, A theorem of Šarkovskiĭ on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248. | Zbl 0354.54027