We prove a classification theorem of the “Glimm-Effros” type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order which is not Borel linearizable.
@article{bwmeta1.element.bwnjournal-article-fmv155i3p293bwm, author = {K\'aroly Simon and Boris Solomyak}, title = {Correlation dimension for self-similar Cantor sets with overlaps}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {293-300}, zbl = {0897.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p293bwm} }
Simon, Károly; Solomyak, Boris. Correlation dimension for self-similar Cantor sets with overlaps. Fundamenta Mathematicae, Tome 158 (1998) pp. 293-300. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p293bwm/
[00000] [1] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. | Zbl 0778.28011
[00001] [2] L. A. Harrington, D. Marker and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), 293-302.