For every module M we have a natural monomorphism and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
@article{bwmeta1.element.bwnjournal-article-fmv155i3p271bwm, author = {Robert El Bashir and Tom\'a\v s Kepka}, title = {Modules commuting (via Hom) with some limits}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {271-292}, zbl = {0902.16009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p271bwm} }
El Bashir, Robert; Kepka, Tomáš. Modules commuting (via Hom) with some limits. Fundamenta Mathematicae, Tome 158 (1998) pp. 271-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p271bwm/
[00000] [1] D. Allouch, Modules maigres, thèse, Montpellier, 1969/70.
[00001] [2] L. Bican, J. Jirásko, T. Kepka and B. Torrecillas, Modules and their extensions I. (Purities), Publ. Dept. Math. M93001 (1993), Faculty of Civil Engin., Czech Techn. Univ., Prague.
[00002] [3] R. Dimitrić, Slender modules over domains, Comm. Algebra 11 (1983), 1685-1700. | Zbl 0578.13010
[00003] [4] R. Dimitrić, Slenderness in abelian categories, in: Abelian Group Theory, Lecture Notes in Math. 1006, Springer, 1983, 375-383. | Zbl 0517.18013
[00004] [5] K. Eda, A Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-193. | Zbl 0533.20026
[00005] [6] K. Eda, On a Boolean power of a torsion free Abelian group, J. Algebra 82 (1983), 84-93. | Zbl 0538.20027
[00006] [7] K. Eda, Slender modules, endo-slender abelian groups and large cardinals, Fund. Math. 135 (1990), 5-24. | Zbl 0752.16014
[00007] [8] A. Ehrenfeucht and J. Łoś, Sur les produits cartésiens des groupes cycliques infinies, Bull. Acad. Polon. Sci. Sér. Astronom. Phys. Sci. Math. 2 (1954), 261-263. | Zbl 0055.25304
[00008] [9] P. Eklof and A. Mekkler, Almost Free Modules, North-Holland, 1990.
[00009] [10] R. El Bashir and T. Kepka, On when small semiprime rings are slender, Comm. Algebra 24 (1996), 1575-1580. | Zbl 0854.16015
[00010] [11] R. El Bashir and T. Kepka, Notes on slender prime rings, Comment. Math. Univ. Carolin. 37 (1996), 419-422. | Zbl 0854.16016
[00011] [12] R. El Bashir, T. Kepka and P. Němec, Modules commuting (via Hom) with some colimits, preprint. | Zbl 1080.16504
[00012] [13] L. Fuchs, Abelian Groups, Pergamon Press, 1960. | Zbl 0100.02803
[00013] [14] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, 1970. | Zbl 0209.05503
[00014] [15] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, 1973. | Zbl 0257.20035
[00015] [16] L. Fuchs and L. Salce, Modules over Valuation Domains, M. Dekker, 1985. | Zbl 0578.13004
[00016] [17] G. Heinlein, Vollreflexive Ringe und schlanke Moduln, Dissertation, Erlangen, 1971.
[00017] [18] L. Henkin, A problem on inverse mapping systems, Proc. Amer. Math. Soc. 1 (1950), 224-225. | Zbl 0041.52204
[00018] [19] A. Kanamori, The Higher Infinite, Springer, 1994. | Zbl 0813.03034
[00019] [20] S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, 1989. | Zbl 0676.06019
[00020] [21] E. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 397-406. | Zbl 0274.16015
[00021] [22] A. Mader, Groups and modules that are slender as modules over their endomorphism rings, in: Abelian Groups and Modules, CISM Courses and Lectures 287, Springer, 1984, 315-327.
[00022] [23] G. de Marco and A. Orsatti, Complete linear topologies on abelian groups, Sympos. Math. 13 (1974), 153-161. | Zbl 0303.20038
[00023] [24] R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73. | Zbl 0108.02601
[00024] [25] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, 1980.
[00025] [26] L. Salce, Moduli slender su anelli di Dedekind, Ann. Univ. Ferrara Sez. VII Sci. Math. 20 (1975), 59-63.
[00026] [27] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 143-144. | Zbl 0085.01702
[00027] [28] J. Trlifaj, Similarities and differences between abelian groups and modules over non-perfect rings, in: Contemp. Math. 171 Amer. Math. Soc., 1994, 397-406. | Zbl 0823.20060
[00028] [29] R. Wisbauer, Grundlagen der Modul und Ringtheorie, R. Fisher, 1988.