Period doubling, entropy, and renormalization
Hu, Jun ; Tresser, Charles
Fundamenta Mathematicae, Tome 158 (1998), p. 237-249 / Harvested from The Polish Digital Mathematics Library

We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212254
@article{bwmeta1.element.bwnjournal-article-fmv155i3p237bwm,
     author = {Jun Hu and Charles Tresser},
     title = {Period doubling, entropy, and renormalization},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {237-249},
     zbl = {0957.37036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p237bwm}
}
Hu, Jun; Tresser, Charles. Period doubling, entropy, and renormalization. Fundamenta Mathematicae, Tome 158 (1998) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p237bwm/

[00000] [AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. | Zbl 0127.13102

[00001] [BORT] H. Bass, M. V. Otero-Espinar, D. N. Rockmore and C. P. L. Tresser, Cyclic Renormalization and Automorphism Groups of Rooted Trees, Lecture Notes in Math. 1621, Springer, Berlin, 1996. | Zbl 0847.58019

[00002] [Bl1] L. Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580. | Zbl 0365.58015

[00003] [Bl2] L. Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398. | Zbl 0386.54025

[00004] [BC] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.

[00005] [BH] L. Block and D. Hart, The bifurcation of periodic orbits of one-dimensional maps, Ergodic Theory Dynam. Systems 2 (1982), 125-129. | Zbl 0507.58035

[00006] [Bo] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. | Zbl 0212.29201

[00007] [BF] R. Bowen and J. Franks, The periodic points of the disc and the interval, Topology 15 (1976), 337-342. | Zbl 0346.58010

[00008] [DGMT] S. P. Dawson, R. Galeeva, J. Milnor and C. Tresser, A monotonicity conjecture for real cubic maps, in: Real and Complex Dynamical Systems, B. Branner and P. Hjorth (eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 464, Kluwer, Dordrecht, 1995, 165-183. | Zbl 0909.54013

[00009] [Ge] T. Gedeon, Stable and non-stable non-chaotic maps of the interval, Math. Slovaca 41 (1991), 379-391. | Zbl 0762.58014

[00010] [Hu] J. Hu, Renormalization, rigidity and universality in bifurcation theory, Ph.D. dissertation, Department of Math., City Univ. of New York, 1995.

[00011] [HS] J. Hu and D. Sullivan, Topological conjugacy of circle diffeomorphisms, Ergodic Theory Dynam. Systems 17 (1997), 173-186. | Zbl 0997.37010

[00012] [JS1] V. Jiménez López and L. Snoha, There are no piecewise linear maps of type 2, preprint, 1994.

[00013] [JS2] V. Jiménez López and L. Snoha, All maps of type 2 are boundary maps, preprint. | Zbl 0877.26005

[00014] [Kl] P. E. Kloeden, Chaotic difference equations are dense, Bull. Austral. Math. Soc. 15 (1976), 371-379. | Zbl 0335.39001

[00015] [La] O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1984), 427-434.

[00016] [MMS] M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 273-318. | Zbl 0761.58007

[00017] [MiT] J. Milnor and W. Thurston, On iterated maps of the interval, in: Lecture Notes in Math. 1342, Springer, Berlin, 1988, 465-563.

[00018] [MiTr] J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, to appear.

[00019] [M1] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 167-169. | Zbl 0459.54031

[00020] [M2] M. Misiurewicz, Invariant measures for continuous transformations of [0,1] with zero topological entropy, in: Lecture Notes in Math. 729, Springer, Berlin, 1979, 144-152.

[00021] [OT] M. V. Otero-Espinar and C. Tresser, Global complexity and essential simplicity: A conjectural picture of the boundary of chaos for smooth endomorphisms of the interval, Phys. D 39 (1989), 163-168. | Zbl 0696.58033

[00022] [Sm] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. | Zbl 0639.54029

[00023] [Mo] F. J. Soares Moreira, Applications du disque infiniment renormalisables, Ph.D. thesis, Nice, 1997.

[00024] [Su] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, in: Mathematics into the Twenty-first Century, American Mathematical Society Centennial Publications, Vol. II, Amer. Math. Soc., Providence, R.I., 1992, 417-466.

[00025] [Ya] K. Yano, A remark on the topological entropy of homeomorphisms, Invent. Math. 59 (1980), 215-220. | Zbl 0434.54010