We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.
@article{bwmeta1.element.bwnjournal-article-fmv155i3p237bwm, author = {Jun Hu and Charles Tresser}, title = {Period doubling, entropy, and renormalization}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {237-249}, zbl = {0957.37036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p237bwm} }
Hu, Jun; Tresser, Charles. Period doubling, entropy, and renormalization. Fundamenta Mathematicae, Tome 158 (1998) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p237bwm/
[00000] [AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. | Zbl 0127.13102
[00001] [BORT] H. Bass, M. V. Otero-Espinar, D. N. Rockmore and C. P. L. Tresser, Cyclic Renormalization and Automorphism Groups of Rooted Trees, Lecture Notes in Math. 1621, Springer, Berlin, 1996. | Zbl 0847.58019
[00002] [Bl1] L. Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580. | Zbl 0365.58015
[00003] [Bl2] L. Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398. | Zbl 0386.54025
[00004] [BC] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
[00005] [BH] L. Block and D. Hart, The bifurcation of periodic orbits of one-dimensional maps, Ergodic Theory Dynam. Systems 2 (1982), 125-129. | Zbl 0507.58035
[00006] [Bo] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. | Zbl 0212.29201
[00007] [BF] R. Bowen and J. Franks, The periodic points of the disc and the interval, Topology 15 (1976), 337-342. | Zbl 0346.58010
[00008] [DGMT] S. P. Dawson, R. Galeeva, J. Milnor and C. Tresser, A monotonicity conjecture for real cubic maps, in: Real and Complex Dynamical Systems, B. Branner and P. Hjorth (eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 464, Kluwer, Dordrecht, 1995, 165-183. | Zbl 0909.54013
[00009] [Ge] T. Gedeon, Stable and non-stable non-chaotic maps of the interval, Math. Slovaca 41 (1991), 379-391. | Zbl 0762.58014
[00010] [Hu] J. Hu, Renormalization, rigidity and universality in bifurcation theory, Ph.D. dissertation, Department of Math., City Univ. of New York, 1995.
[00011] [HS] J. Hu and D. Sullivan, Topological conjugacy of circle diffeomorphisms, Ergodic Theory Dynam. Systems 17 (1997), 173-186. | Zbl 0997.37010
[00012] [JS1] V. Jiménez López and L. Snoha, There are no piecewise linear maps of type , preprint, 1994.
[00013] [JS2] V. Jiménez López and L. Snoha, All maps of type are boundary maps, preprint. | Zbl 0877.26005
[00014] [Kl] P. E. Kloeden, Chaotic difference equations are dense, Bull. Austral. Math. Soc. 15 (1976), 371-379. | Zbl 0335.39001
[00015] [La] O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1984), 427-434.
[00016] [MMS] M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 273-318. | Zbl 0761.58007
[00017] [MiT] J. Milnor and W. Thurston, On iterated maps of the interval, in: Lecture Notes in Math. 1342, Springer, Berlin, 1988, 465-563.
[00018] [MiTr] J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, to appear.
[00019] [M1] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 167-169. | Zbl 0459.54031
[00020] [M2] M. Misiurewicz, Invariant measures for continuous transformations of [0,1] with zero topological entropy, in: Lecture Notes in Math. 729, Springer, Berlin, 1979, 144-152.
[00021] [OT] M. V. Otero-Espinar and C. Tresser, Global complexity and essential simplicity: A conjectural picture of the boundary of chaos for smooth endomorphisms of the interval, Phys. D 39 (1989), 163-168. | Zbl 0696.58033
[00022] [Sm] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. | Zbl 0639.54029
[00023] [Mo] F. J. Soares Moreira, Applications du disque infiniment renormalisables, Ph.D. thesis, Nice, 1997.
[00024] [Su] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, in: Mathematics into the Twenty-first Century, American Mathematical Society Centennial Publications, Vol. II, Amer. Math. Soc., Providence, R.I., 1992, 417-466.
[00025] [Ya] K. Yano, A remark on the topological entropy of homeomorphisms, Invent. Math. 59 (1980), 215-220. | Zbl 0434.54010