Self-homeomorphisms of the 2-sphere which fix pointwise a nonseparating continuum
Fabel, Paul
Fundamenta Mathematicae, Tome 158 (1998), p. 201-214 / Harvested from The Polish Digital Mathematics Library

We prove that the space of orientation preserving homeomorphisms of the 2-sphere which fix pointwise a nontrivial nonseparating continuum is a contractible absolute neighborhood retract homeomorphic to the separable Hilbert space l2.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212252
@article{bwmeta1.element.bwnjournal-article-fmv155i3p201bwm,
     author = {Paul Fabel},
     title = {Self-homeomorphisms of the 2-sphere which fix pointwise a nonseparating continuum},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {201-214},
     zbl = {0904.58006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p201bwm}
}
Fabel, Paul. Self-homeomorphisms of the 2-sphere which fix pointwise a nonseparating continuum. Fundamenta Mathematicae, Tome 158 (1998) pp. 201-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p201bwm/

[00000] [1] R. H. Bing, The Geometric Topology of 3-Manifolds, Amer. Math. Soc., Providence, R.I., 1983.

[00001] [2] B. L. Brechner, On stable homeomorphisms and imbeddings of the pseudo-arc, Illinois J. Math. 22 (1978), 630-661. | Zbl 0386.54021

[00002] [3] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. | Zbl 0472.57009

[00003] [4] B. Friberg, A topological proof of a theorem of Kneser, Proc. Amer. Math. Soc. 39 (1973), 421-426.

[00004] [5] O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389-408. | Zbl 0042.41102

[00005] [6] W. Haver, Topological description of the space of homeomorphisms on closed 2-manifolds, Illinois J. Math. 19 (1975), 632-635. | Zbl 0338.57018

[00006] [7] D. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25-33. | Zbl 0167.51904

[00007] [8] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778. | Zbl 0131.20801

[00008] [9] R. Luke and W. K. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 273-285. | Zbl 0235.57002

[00009] [10] W. K. Mason, The space of all self-homeomorphisms of a 2-cell which fix the cell's boundary is an absolute retract, ibid. 161 (1971), 185-205. | Zbl 0234.57016

[00010] [11] C. Pommerenke, Boundary Behavior of Conformal Maps, Springer, Berlin, 1991.

[00011] [12] D. J. Sprows, Isotopy groups of bounded 2-manifolds, Kumamoto J. Sci. (Math.) 15 (1983), 73-77. | Zbl 0528.57007

[00012] [13] J. van Mill, Infinite Dimensional Topology, North-Holland, Amsterdam, 1989.